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Abstract

Ranking is an essential process that allows sporting authorities
to determine the relative performance of athletes. While ranking is
straightforward in some sports, it is more complicated in MMA (mixed
martial arts), where competition is often fragmented. This paper
describes the mathematics behind four existing ranking algorithms:
Elo’s System, Massey’s Method, Colley’s Method, and Google’s PageR-
ank, and shows how to adapt them to rank MMA fighters in the UFC
(Ultimate Fighting Championship). We also provide a performance
analysis for each ranking method.
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1 Introduction

On November 14th, 2015, in UFC 193, Ronda Rousey faced Holly

Holm for the title of UFC (Ultimate Fighting Championship) Ban-

tamweight Champion. The defending champion and huge favorite,

Rousey was ranked number one by official UFC rankings. Holm, while

also a highly decorated fighter, was ranked seventh. In one of the most

significant upsets in UFC history, Holm prevailed in a dominating fash-

ion — a knockout head kick in the second round.

While Rousey vs. Holm was a stunning upset — it was not an

isolated incident. The following year at UFC 199, the number four

ranked fighter Michael Bisping knocked out the number one ranked

fighter Luke Rockhold in the first round.

Although ranking fighters is not a straightforward task, the offi-

cial UFC rankings are notorious for being biased. UFC rankings for

fighters are generated through a voting panel of MMA (Mixed Mar-

tial Arts) media members from 21 outlets, including FightNews, Fight

Network, and Top Turtle Podcast. (See [10]) The flaws in this system

have motivated the creation of third-party ranking systems like Fight-

Matrix (See [3]) — a ranking system that uses mathematics rather

than opinion to rank fighters. The purpose of this paper is to explore

several ranking algorithms and their potential for ranking MMA fight-

ers.

1

1A ranking of items is a rank-ordered list of the items. A rating of items assigns a
numerical score to each item. The rating is used to construct the ranking.
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1.1 Elo’s System

Arpad Elo (1902 - 1993) was a Hungarian-born physics professor

and avid chess player (See [6]). He devised a ranking system to rank

chess players. In its current form, it works as follows.

Each player starts with an initial rating1. Each time players i and

j play against each other, their respective prior ratings r
(old)
i and r

(old)
j

are updated to become r
(new)
i and r

(new)
j . The formula for updating

the players’ ratings are,

r
(new)
i = r

(old)
i +K(Sij − µij) and r

(new)
j = r

(old)
j +K(Sji − µji),

where,

Sij =



1 if i beats j,

0 if i loses to j,

1/2 if i and j tie,

µij =
1

1 + 10−dij/400
, where dij = r

(old)
i − r

(old)
j ,

and K, known as the “K-factor”, is some defined constant. Different

chess groups use different values of K. Its purpose is to properly

balance the deviation between actual and expected scores against prior

ratings. A higher K value results in more volatile ratings. In chess,
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the K-factor is allowed to change with the level of competition. For

example, the International Chess Federation sets,



K = 25 for new players until 30 recognized games have been completed;

K = 15 for players with > 30 games whose rating has never exceed 2400;

K = 10 for players having reached at least 2400 at some point in the past.

1.2 Massey’s Method

In 1997, Kenneth Massey proposed a ranking system that used a

least-squares approach to rank college football teams. (See [6, 8].)

This method is based on the premise that the difference between two

teams’ ratings should predict the point differential in a game between

those two teams. For instance, consider Table 1 of hypothetical score

data from a round-robin tournament played by teams 1, 2, 3, and 4.

Let,

yk = ri − rj ,

where ri and rj are the scores for teams i and j, respectively. The

term yk is called the margin of victory for game k.
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Table 1: Score Data

1 2 3 4

1 6-1 6-4 9-3

2 1-6 3-10 9-2

3 4-6 10-3 2-4

4 3-9 2-9 4-2

From Table 1, we can form the following system of equations:



r1 − r2

r1 − r3

r1 − r4

r2 − r3

r2 − r4

r3 − r4


=



5

2

6

−7

7

−2


,

which translates to



1 −1 0 0

1 0 −1 0

1 0 0 −1

0 1 −1 0

0 1 0 −1

0 0 1 −1





r1

r2

r3

r4


=



5

2

6

−7

7

−2


.

Generally, if we have n teams, these equations can be written in
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the following matrix-vector form:

Xr = y.

Typically, this turns out to be an over-determined system. A least

squares solution can be obtained from the normal equations,

XTXr = XT y.

In our example, this yields,



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3





r1

r2

r3

r4


=



13

−5

3

−11


.

We call XTX a new matrix M and assign p to XT y, an n × 1

column vector of total point differentials.

Remark The matrix M = XTX is equivalent to the Laplacian of a

corresponding undirected graph, describing a fight network.
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Theorem ([9, p. 147]) The rank of a Laplacian matrix of a graph G

is n− ω(G) where n is the number of nodes and ω(G) is the number

of connected components.

Since M is a Laplacian matrix, by Theorem 1.1.1, the rank of M

is the number of nodes of a corresponding undirected graph minus

the number of components. This means that, due to rank deficiency,

the system Mr = p will be under-determined. We can see this if we

multiply the left and right-hand side of our equation by



1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1


,
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to obtain



1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1





3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3





r1

r2

r3

r4


=



1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1





13

−5

3

−11


,



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

0 0 0 0





r1

r2

r3

r4


=



13

−5

3

0


.

If the graph is fully connected, that is, there is only one component,

the rank of the n × n matrix M will be n − 1. To attain a full rank,

we must impose one additional condition. Massey suggests adding the

constraint that the rating vector r must be zero-sum. He accomplishes

this by replacing the last row of M by 1’s and the corresponding entry

in p by 0. In our example, the system becomes,



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

1 1 1 1





r1

r2

r3

r4


=



13

−5

3

0


.



8

Now, solving for r, we find,

r =



13/4

−5/4

3/4

−11/4


.

From this rating vector, we construct the corresponding ranking vec-

tor,

R =



1

3

2

4


.

1.3 Colley’s Method

In 2001, Dr. Wesley Colley, an astrophysicist by training, put

forward a new sports ranking system. His method is a modification of

a straightforward ranking system based on winning percentage. (See

[2, 6].)

1.3.1 Winning Percentage

Let ti be the number of teams team i has played and let wi be the

number of times team i has won. Using the winning percentage, the

rating for team i is
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ri =
wi

ti
.

Some disadvantages of this winning percentage method are:

• Ties in ratings occur often

• The strength of the opponent is not factored into the analysis

• Before any games are played, the rating for each team is 0/0

• A team without wins has a rating of 0

1.3.2 Laplace’s Rule of Succession

Laplace’s rule of succession states that if an event has occurred

p + q times in succession where p is the number of successes and q

is the number of failures, then the probability of success on the next

trial is (p+1)/(p+q+2). (See [7]). If team i plays a total of ti = p+q

games and wins wi = p games (and loses li = q games), then Laplace’s

rule of succession says that the probability of winning the next game

is,

1 + wi

2 + ti
.

Based on this probability, Colley modifies the rating of team i to be,

ri =
1 + wi

2 + ti
.
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This suggests that a team’s rating is their probability of winning the

next game based on the prior outcomes. This adjustment has several

advantages over the winning percentage method. Now, observe that

wi =
wi − li

2
+

wi + li
2

=
wi − li

2
+

ti
2

=
wi − li

2
+

ti∑
k=1

1

2
.

Since all teams begin with rk = 1/2 and the ratings are distributed

around this number, we have,

ti∑
k=1

1

2
≈

∑
k∈Oi

rk,

where Oi is the set of teams that have played team i. It follows that

the ratings approximately satisfy the system of n equations

wi =
wi − li

2
+

∑
k∈Oi

rk.

Then

ri =
1 + wi

2 + ti
=

1 +
(
wi−li

2 +
∑

k∈Oi
rk

)
2 + ti

,

Multiplying by 2 + ti gives us
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(2 + ti)ri = 1 +

wi − li
2

+
∑
k∈Oi

rk

 .

and by subtracting
∑

k∈Oi
rk we have

(2 + ti)ri −
∑
k∈Oi

rk = 1 +
wi − li

2
.

This can be compactly written in the matrix-vector form, Cr = b,

where,

Cij =


2 + ti i = j,

−nij i ̸= j,

, bi = 1 +
1

2
(wi − li),

where nij is the number of times teams i and j played each other.

1.3.3 Cholesky Factorization

A symmetric matrix A is positive definite if xTAx is positive for all

non-zero vectors x. A positive definite matrix A can be expressed as

A = XTX for a non-singular matrix X where X is upper triangular

with positive diagonal elements. It can be shown that the Colley

matrix, C, is a real symmetric positive definite. This means that we

can efficiently solve the system Cr = b using Cholesky factorization.

(See [5])

Remark The Massey and Colley ranking systems are related by the
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formula C = 2I + M . This allows us to easily construct C having

already constructed M .

1.4 PageRank

Initially developed by Google co-founders Larry Page and Sergey

Brin to rank web pages, PageRank is perhaps the most noteworthy

ranking algorithm of the 21st century. To describe the PageRank

algorithm, we begin by considering the directed graph shown in Figure

1. (See [1])

Figure 1: A directed graph with vertex set V = {1, 2, 3, 4} and edge set

E = {(1, 2), (1, 3), (2, 4), (3, 2), (3, 4)}
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Remark The adjacency matrix A = (aij) of a graph G := (V,E) with

|V | vertices and |E| edges is,

aij =


1, if (vi, vj) ∈ E,

0, otherwise .

From the directed graph in Figure 2, can form the adjacency matrix,

A =



0 1 1 0

0 0 0 1

0 1 0 1

0 0 0 0


.

We then divide each row of matrix A by the number of out-degrees

per page to produce the hyperlink matrix, H.

H =



0 1/2 1/2 0

0 0 0 1

0 1/2 0 1/2

0 0 0 0


.

Because PageRank requires a stochastic matrix in which all the row

sums are equal to 1, any row that contains all zeros has all elements

replaced by 1/|V |.
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H =



0 1/2 1/2 0

0 0 0 1

0 1/2 0 1/2

1/4 1/4 1/4 1/4


.

Finally, to ensure that the graph is strongly inter-connected and irre-

ducible, the matrix is modified to obtain the Google matrix,

G = αH + (1− α)E,

where α, called a damping factor, is set as α = 0.85 and E is a

|V | × |V | matrix entirely populated by 1/|V |. Note that H and G

are row-stochastic, and thus can be viewed as transition matricices of

Markov chains.

G =



0.0375 0.4625 0.4625 0.0375

0.0375 0.0375 0.0375 0.8875

0.0375 0.4625 0.0375 0.4625

0.25 0.25 0.25 0.25


.

The final rating vector is then computed using the power method,

rk = r0G
k
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where r0 is an initial estimated rating vector which we choose to pop-

ulate with values chosen randomly over [0, 1).

2 Ranking Fighters

2.1 Data

The data used for analysis comes from the Kaggle data set UFC-

Fight historical data from 1993 to 2021, which was scraped from the

official UFC site, ufcstats.com (See [11]). For all algorithms, we use

data up to 2020 to test the ranking system’s ability to predict the

outcomes of the 451 fights with an outcome in 2020.

2.2 Applying Elo’s System

Each fighter has a rating. By convention, each fighter will start

with a rating of 1500. When two fighters face each other, they wager a

portion of their rating. The K-factor determines the size of the portion

they wager. We establish thisK-factor experimentally by choosing the

value that yields the highest number of successfully predicted fight

outcomes.
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Figure 2: Percent of Fight Outcomes Predicted Correctly vs K-Factor using
Elo’s System

Based on this, we choose our K-factor to be 155.

2.3 Applying Massey and Colley Methods

Combat sports such as MMA or boxing present a unique challenge

when ranking fighters. They are:

(i) Many fighters will never face each other. In the Massey and Col-

ley methods, this will produce under-determined linear systems.

(ii) Fighters rarely have equal numbers of bouts. One fighter may

have five matches in a year, while another only has one. Al-

though the fighter with more fights may have more wins, the

Massey or Colley systems may rank the fighter with fewer fights

higher.

(iii) Massey’s Method requires defining a margin of victory. In the
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UFC, there is no defined point system like in football or basket-

ball, so there is no clear way to define this margin of victory.

The first two challenges can be remedied by the introduction of

a super user (or super fighter) (See [4]). This super fighter is a hy-

pothetical fighter that beats every fighter they face. By introducing

this super fighter, we can guarantee that our network of fighters is

connected. Further, this fictitious fighter can reduce the effect caused

by an unequal number of bouts.

The third challenge remains. We would like to implement a formula

that is simple and minimizes ad-hoc decisions. For Massey’s Method,

we choose to define the margin of victory by m/(m + t), where t is

the time the bout lasts in minutes and m is a constant set as the

maximum theoretical fight time in minutes. In the UFC, a usual

match has 3 rounds each lasting 5 minutes. This gives a minimum

margin of victory of 15/(15 + 15) = 1/2 and a maximum margin of

victory of 15/(15 + 0) = 1. By defining the margin of victory in

this way, we assure that the margin of victory is positive, a greater

margin of victory is awarded to fighters who win their bouts faster,

and the hypothetical greatest margin of victory is twice that of the

hypothetical smallest margin.

2.3.1 Minimum Cutoff

It may be necessary to introduce a super fighter to remedy a dis-

connected network of fighters; however, the super fighter doesn’t need

to face everybody. Changing whom the super fighter faces can drasti-

cally change the rankings of fighters. To correct the inflated ratings of
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Figure 3: Percent of Fights Predicted Correctly vs. Minimum Cutoff

fighters with few bouts, we choose to have the super fighter only face

fighters that have had a number of bouts below some minimum cutoff.

We establish this minimum cutoff value experimentally by choosing

the value that maximizes the percent of fight outcomes predicted cor-

rectly in 2020. Based on our results (See Figure 3), we decide to have

the super fighter face fighters with less than or equal to four bouts.
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2.4 Computation

We now return to our introduction and rank all the Women’s Ban-

tamweight fighters before UFC 193. As demonstrated in Figure 4,

there is a significant disparity in the number of bouts among fighters.

Figure 4: Network of UFC Women’s Bantamweight Fights (Feb. 23, 2013, -

Nov. 9, 2015)

After introducing the super fighter, we obtain the network shown

in Figure 5. Table 2 shows the official UFC rankings published in

November 9th 2015, and the Colley, Massey, Elo, and PageRank rank-

ings using data up to November 9th, 2015,
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Figure 5: After Introducing the Super Fighter

Table 2: Ranking of UFC Women’s Bantamweight Fighters (November 9th,

2015)

Official UFC Rankings Adapated Colley Rankings Adapated Massey Rankings Elo Rankings PageRank

Ronda Rousey Ronda Rousey Ronda Rousey Ronda Rousey Ronda Rousey

Cat Zingano Cat Zingano Cat Zingano Julianna Pena Cat Zingano

Amanda Nunes Julianna Pena Julianna Pena Alexis Davis Jessica Andrade

Sarah Kaufman Alexis Davis Amanda Nunes Amanda Nunes Holly Holm

Julianna Pena Amanda Nunes Miesha Tate Holly Holm Miesha Tate

Sara McMann Holly Holm Alexis Davis Cat Zingano Alexis Davis

Holly Holm Miesha Tate Holly Holm Bethe Correia Raquel Pennington

Bethe Correia Bethe Correia Marion Reneau Marion Reneau Amanda Nunes

Jessica Eye Marion Reneau Liz Carmouche Valerie Letourneau Marion Reneau

Liz Carmouche Raquel Pennington Jessica Eye Raquel Pennington Julianna Pena

Marion Reneau Germaine de Randamie Sara McMann Germaine de Randamie Liz Carmouche

Raquel Pennington Valeria Letourneau Bethe Correia Miesha Tate Bethe Correia
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It is interesting to note that while Rousey is ranked first in all of

the rankings, Holm is ranked higher in the Colley, Elo, and PageRank

rankings than in the UFC rankings. Also, despite being ranked fourth

by the UFC, Sarah Kaufman does not appear in the top 12 rankings

of any of the methods.

Repeating the process with Men’s Middleweight fighters before

UFC 199, we find the following.

Figure 6: Network of UFC Men’s Middleweight Fights (July 27, 1997, - May

31, 2016)
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Figure 7: After Introducing the Super Fighter

Table 3: Ranking of UFC Men’s Middleweight Fighters (May 31, 2016)

Official UFC Rankings Adapted Colley Rankings Adapted Massey Rankings Elo Rankings PageRank

Luke Rockhold Yoel Romero Ronaldo Souza Anderson Silva Vitor Belfort

Chris Weidman Chris Weidman Yoel Romero Yoel Romero Luke Rockhold

Ronaldo Souza Ronaldo Souza Luke Rockhold Chris Weidman Chris Weidman

Vitor Belfort Anderson Silva Chris Weidman Demian Maia Yoel Romero

Michael Bisping Luke Rockhold Robert Whittaker Ronaldo Souza Anderson Silva

Anderson Silva Robert Whittaker Derek Brunson Robert Whittaker Michael Bisping

Robert Whittaker Vitor Belfort Lyoto Machida Derek Brunson Ronaldo Souza

Lyoto Machida Derek Brunson Gegard Mousasi Brad Tavares Thales Leites

Gegard Mousasi Tim Kennedy Vitor Belfort Vitor Belfort Demian Maia

Tim Kennedy Michael Bisping Tim Kennedy Tim Kennedy Gegard Mousasi

Uriah Hall Demian Maia Anderson Silva Michael Bisping Dan Henderson

Derek Brunson Lyoto Machida Thiago Santos Krzysztof Jotko Tim Boetsch
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2.4.1 Spearman’s Rank Correlation

Spearman’s rank correlation coefficient, Rs, is a statistical measure

of the strength of a link or relationship between two data sets. We can

use it to quantify the similarity between two rankings. The coefficient

can hold values from -1 to 1. A value of 1 indicates a perfect posi-

tive association between rankings, a value of 0 indicates no association

between rankings and a value of -1 indicates a perfect negative associ-

ation between rankings. Table 3 reports the rank correlation between

each pair of rankings in Table 2 and an associated p-value where the

null hypothesis is that there is no relationship between rankings. We

compute the pairwise rank correlations below.

Table 4: Spearman’s Rank Correlation (Top 12 Women’s Bantamweight

Rankings)

Rs p

UFC - Colley 0.3603 0.20

UFC - Massey 0.3143 0.50

UFC - Elo 0.243 0.50

UFC - PageRank 0.2937 0.50

Colley - Massey 0.9161 0.001

Colley - Elo 0.8042 0.005

Colley - PageRank 0.4283 0.20

Massey - Elo 0.8252 0.002

Massey - PageRank 0.3112 0.50

Elo - PageRank 0.2535 0.50
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Table 5: Spearman’s Rank Correlation (Top 12 Mens’s Middleweight Rank-

ings)

Rs p

UFC - Colley 0.4126 0.20

UFC - Massey 0.2587 0.50

UFC - Elo -0.0227 0.50

UFC - PageRank 0.5944 0.05

Colley - Massey 0.6224 0.05

Colley - Elo 0.4878 0.20

Colley - PageRank 0.6818 0.02

Massey - Elo 0.3147 0.50

Massey - PageRank 0.3147 0.50

Elo - PageRank 0.4545 0.20

2.4.2 Performance Analysis

In 2020, there were 451 UFC fights with a determined winner. A

ranking correctly predicted the outcome if, prior to the outcome of

a match, the winner is ranked higher than the loser. The results for

each ranking method are summarized in Table 6.
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Table 6: Percent of Fights in 2020 Predicted Correctly

Percent of Fights Predicted Correctly

Adapted Colley’s Method 44.54 %

Adapted Massey’s Method 42.65%

Elo’s System 43.84 %

PageRank 42.89 %

We can see that all of the methods performed similarly with the

Adapated Colley’s Method performing slightly above the rest.

3 Conclusion

Ranking is an essential process that allows sporting authorities

to determine the relative performance of athletes. While ranking

is straightforward in some sports, it is more complicated in MMA

(mixed martial arts), where competition is often fragmented. We have

described the mathematics behind four existing ranking algorithms:

Elo’s System, Massey’s Method, Colley’s Method, and Google’s PageR-

ank, and shown how to adapt them to rank MMA fighters in the

UFC (Ultimate Fighting Championship). While none of the methods

performed well in predicting future outcomes, (the best performing

method, Colley’s Method, only predicted 44% of outcomes correctly)

all of the rankings still have use in matchmaking or for personal inter-

est. Any of the methods described here could be easily extended to

ranking other sports where, like MMA, competition is fragmented.
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A future research topic could be investigating the efficacy of two

chess ranking algorithms, Glicko and Glicko-2, in ranking MMA fight-

ers. Further, we could investigate modifying point differential formula

used in Massey’s method to achieve a better outcome.
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4 Appendix

4.1 Python Code

4.1.1 Colley and Massey Rankings

import pandas as pd

import numpy as np

import scipy

import networkx as nx

import datetime as dt

# Dates

start_day = <startdate>

end_day = <enddate>

data = data_raw[data_raw[’date’].between(start_day, end_day)]

# Weightclass

data_mw = data.loc[data[’Fight_type’].str.contains(<weightclass>)]

# Plot

fighters = data_mw[[’R_fighter’, ’B_fighter’]]

G = nx.from_pandas_edgelist(fighters, ’R_fighter’, ’B_fighter’)

from matplotlib.pyplot import figure

figure(figsize=(20, 20))

nx.draw(G, with_labels=True)

# Get new column minutes

minutes = data_mw[’last_round_time’].str.split(’:’).\
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apply(lambda x: int(x[0]) + int(x[1])/60)

data_mw.insert(4, ’minutes’, minutes)

fight_time = 5*(data_mw[’last_round’] - 1) + data_mw[’minutes’]

data_mw.insert(4, ’fight_time’, fight_time)

# Remove bouts without a winner

data_mw = data_mw[data_mw[’Winner’].notna()]

# Get average fight time

avgtime = data_mw[’fight_time’].mean()

# Add super fighter

minimum_cutoff = 4

degrees = [val for (node, val) in G.degree()]

fighters = [node for (node, val) in G.degree()]

max_degree = max(degrees)

min_degree = min(degrees)

# remove if deg is small

remove = [node for node,degree in\

dict(G.degree()).items() if degree < 4]

G.remove_nodes_from(remove)

while min(degrees) <= minimum_cutoff:

players_few_fights = []

for i in range(len(degrees)):

if degrees[i] <= minimum_cutoff:

players_few_fights.append(fighters[i])
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degrees[i] = degrees[i] + 1

for i in range(len(players_few_fights)):

new_row = [’Super Fighter’, players_few_fights[i], ’ ’, ’ ’,

avgtime, ’ ’, ’ ’, end_day + \

’ 00:00:00’, ’ ’, ’Super Fighter’ ]

data_mw = data_mw.append(pd.Series(new_row,

index=data_mw.columns[:len(new_row)]), ignore_index=True)

# Plot network after adding super fighter

G = nx.from_pandas_edgelist(data_mw, ’R_fighter’, ’B_fighter’)

from matplotlib.pyplot import figure

figure(figsize=(20, 20))

nx.draw(G, with_labels=True)

4.1.2 PageRank Rankings

def pagerank(M, num_iterations: int = 100, d: float = 0.85):

N = M.shape[1]

v = np.random.rand(N, 1)

v = v / np.linalg.norm(v, 1)

M_hat = (d * M + (1 - d) / N)

for i in range(num_iterations):

v = M_hat @ v

return v

PR = nx.from_pandas_edgelist(data_mw, source = ’Loser’, target \

= ’Winner’, create_using=nx.DiGraph())

pr_adj = scipy.sparse.csr_matrix.toarray\

(nx.adjacency_matrix(PR)).astype(’float64’)
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m, n = pr_adj.shape

pr_adj_copy = pr_adj.copy()

for i in range(n):

for j in range(m):

if pr_adj[i, j] != 0:

pr_adj[i, j] = pr_adj[i, j]/sum(pr_adj_copy[:,j])

for i in range(n):

if sum(pr_adj[:,i]) == 0:

pr_adj[:,i] = np.full(n, 1/n)

pr_r = pagerank(pr_adj, 7500, 0.85)

argsort_pr = np.ndarray.flatten(np.argsort(pr_r, axis=0))

nodes = list(PR.nodes())

ranked_fighters_pr = []

for i in argsort_pr:

#print(i)

ranked_fighters_pr.append(nodes[i])

ranked_fighters_pr

.

4.1.3 Elo Rankings

fighters = data_mw[[’R_fighter’, ’B_fighter’]]

G = nx.from_pandas_edgelist(fighters, ’R_fighter’, ’B_fighter’)

fighters = [node for (node, val) in G.degree()]

#Initial Ratings Vector
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ratings = np.full(len(fighters), 1000)

losers = []

for j in range(len(data_mw)):

if data_mw[’Winner’].values.tolist()[j] == \

data_mw[’R_fighter’].values.tolist()[j]:

losers.append(data_mw[’B_fighter’].values.tolist()[j])

else:

losers.append(data_mw[’R_fighter’].values.tolist()[j])

data_mw.insert(8, ’Loser’, losers)

data_mw = data_mw[data_mw[’Winner’].notna()]

data_mw = data_mw[data_mw[’Loser’].notna()]

elo_mw = data_mw[[’Winner’, ’Loser’]]

winnerloser = elo_mw.values.tolist()

def elo(r_winner, r_loser):

K = 155

S_win = 1

S_lose = 0

d_win = r_winner - r_loser

d_lose = r_loser - r_winner

mu_win = 1/(1+10**(-d_win/400))

mu_lose = 1/(1+10**(-d_lose/400))

r_winner = r_winner + K*(S_win - mu_win)

r_loser = r_loser + K*(S_lose - mu_lose)

return r_winner, r_loser
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for i in range(len(winnerloser)):

winner = winnerloser[i][0]

loser = winnerloser[i][1]

winner_pos = fighters.index(winner)

loser_pos = fighters.index(loser)

r_winner = ratings[winner_pos]

r_loser = ratings[loser_pos]

r_winner_new, r_loser_new = elo(r_winner, r_loser)

ratings[winner_pos] = r_winner_new

ratings[loser_pos] = r_loser_new

argsort_elo = np.ndarray.flatten(np.argsort(-1*ratings, axis=0))

ranked_fighters_elo = []

for i in argsort_elo:

#print(i)

ranked_fighters_elo.append(fighters[i])

ranked_fighters_elo
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