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Chapter I 

Background of Nitellopsis obtusa (Starry Stonewort) 

Species Description 

 Nitellopsis obtusa (starry stonewort) is a green macro alga native to Eurasia in the family 

Characeae (Groves 1919). Nitellopsis obtusa can grow from the sediment to 30-120 cm in the 

water column with a slender to robust axis approximately 0.7-2mm in diameter, depending on 

phenology and growing conditions (Larkin et al. 2018). Branchlets form from the main stem at 

the nodes in whorls of 5-8 branchlets with each branchlet consisting of 2-3 segments with a total 

length up to 9 cm. Nitellopsis obtusa is dioecious and on the nodes of the branchlets gametangia 

appear in pairs or in some cases solitarily. The antheridia are 0.8-1.5 mm in diameter and orange 

to bright red in color, while the oogonia are bright red to light green and almost spherical in 

shape (Groves, 1919, Boissezon et al. 2017, Larkin et al. 2018). The oogonia have yet to be 

observed in North America (Sleith et al. 2015, Larkin et al. 2018). 

  Nitellopsis obtusa also forms star-shaped bulbils, which the common name is derived 

from, as a way of asexual reproduction as well as a propagule for spatial and temporal 

dispersion. White bulbils form beneath the sediment along the nodes of the rhizoid, and green 

bulbils form along the main axes and branchlet nodes (Bharathan 1987). While N. obtusa is able 

to reproduce both vegetatively and sexually it appears to undergo vegetative reproduction more 

frequently in both its native and invasive ranges (Larkin et al. 2018). Although a growing season 

with warm and sunny conditions could stimulate sexual reproduction (Boissezon et al. 2017), 

this has not been observed in North American populations (Sleith et al. 2015, Larkin et al. 2018). 

There are a few hypotheses surrounding why this is the case including poor environmental 

conditions preventing oogonia formation, only antheridia plants survived introduction to North 
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America, and distinct ecotypes maybe suppressing reproductive structures (Larkin et al. 2018). 

However sexual reproduction could be a strategy to ensure the production of long-lived, resistant 

propagules (Boissezon 2014). Gyrogonites, the oospores found in sediments, can lie in a dormant 

state and persist for extended periods of time within lake sediments (Bonis and Grillas 2002). 

These gyrogonites can be ingested by waterfowl and carried long distances to new bodies of 

water to start new populations (Bonis and Grillas 2002).  

 

Habitat 

Nitellopsis obtusa has been seen in eutrophic lakes but are most frequently observed in 

oligotrophic and mesotrophic conditions (Ozimek and Kowalczewski 1984, Hargeby 1990, 

Blindow 1992, Królikowska 1997, Bennett et al. 2001, Stewart 2004, Rey-Boissezon and Joye 

2015, Schneider et al. 2015). In its native range it is found in areas of low light intensity, 

typically 4 to 8m depths, however it can grow in as little as 1m and up to 30m depths (Olsen 

1944). The areas of lakes they are typically found in are protected from strong currents, have 

high calcium levels, high conductivity, a neutral to basic pH, and a low to moderate coverage 

(Zaneveld 1940, Olsen 1944, Simons and Nat 1996, Królikowska 1997, Soulié-Märsche et al. 

2002, Boissezon 2014, Auderset Joye and Rey-Boissezon 2015, Rey-Boissezon and Joye 2015).  

Nitellopsis obtusa is tolerant of saline conditions and can survive up to 17 ppt for up to a week 

(Simons and Nat 1996, Winter et al. 1999). Even though it can tolerate shifts in salinity, it is 

unable to survive and reproduce in water bodies with salinity consistently higher than 5 PSU.  

It can grow in large monospecific mats varying in density generally in the preferred 

conditions mentioned above (Olsen 1944, Stewart 2004, Rey-Boissezon and Joye 2015). While 

these mats are usually dominated by N. obtusa there have been documented cases of co-
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occurrence with a variety of species (Olsen 1944, Best 1987, Blindow 1992, Kato et al. 2005, 

Hilt et al. 2010). In its nonnative range it has been found in a variety of habitats ranging from 

inland ponds to bays in the Laurentian Great Lakes, as well as a variety of substrates from a 

rocky/sandy bottom to a muddy bottom (Sleith et al. 2015). In its invaded range, Nitellopsis 

obtusa grows in similar calcareous, neutral to basic pH conditions as its native range, however it 

is found more in mesotrophic to eutrophic systems (Larkin et al. 2018). Similar to the native 

populations, the invasive populations grow in large monospecific mats with little co-occurrence 

of other macrophytes (Larkin et al. 2018). In Prequi’ile Bay, Lake Ontario, dock density, low 

wave action, and proximity to marinas were good predictors of N. obtusa presence (Midwood et 

al. 2016). 

Distribution and Invasion 

The native range of N. obtusa is a disjointed distribution extending from Western Europe 

to Japan and as far south as Myanmar (Soulié-Märsche et al. 2002). Its invaded range of North 

America began around 1978 in the St. Lawrence River where it was seen to be growing 

throughout the littoral zone, but with the greatest abundance at 3 to 5 m (Geis et al. 1981). Geis 

et al. (1981) suggests that N. obtusa first arrived in ship ballast water. It has since spread through 

New York primarily to waters near Lake Ontario and the St. Lawrence River (Sleith et al. 2015). 

In 1983 it was found in the St. Clair-Detroit River system at depths of 0.9 to 3.4 m and current 

velocities of 0 to 51.8 cm/s (Schloesser et al. 1986). As of May 2017, over half of the counties in 

the southern Lower Peninsula of Michigan have populations of N. obtusa, as well as one 

unconfirmed sighting in Millecoquins Lake in the Upper Peninsula during 2014 (Midwest 

Invasive Species Information Network (MISIN) 2017). The current invasive range includes the 

St. Lawrence River, the St. Clair-Detroit River system, Lake Ontario, Lake Erie, Lake Huron, 
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Michigan’s Lower Peninsula, New York, Vermont, Pennsylvania, northern Indiana, Wisconsin, 

and as of 2015 Minnesota (Mills et al. 1993, Sleith et al. 2015, Midwood et al. 2016, MISIN 

2017). According to the Minnesota DNR the first occurrence of N. obtusa in Minnesota was in 

Lake Koronis in 2015 and has spread to 20 other lakes. The likely cause of overland dispersal in 

the U.S. are boats and boating equipment transporting the bulbils and vegetative fragments of N. 

obtusa (Larkin et al. 2018). Sleith et al. (2015) surveyed 20 lakes lacking boat launches within 

heavily N. obtusa invaded areas and did not detect presence of the species.  

Ecological Impacts 

 Nitellopsis obtusa has been seen to lower macrophyte species richness in multiple lakes 

as its biomass increased at various depths (Brainard and Schulz 2017, Harrow-Lyle and 

Kirkwood 2022). Heavy stands of starry stonewort may limit fish spawning habitat as well as 

reduce the long-term viability of benthic organisms via oxygen depletion during senescence 

(Brainard and Schulz 2017). 

Research Needs 

 There is insufficient data on the phenology of N. obtusa in both its native and invaded 

ranges as well as the ecological niches it fills in the invaded range. A study by Glisson et al. 

(2022) found that starry stonewort has a late season growth pattern however the environmental 

factors associated with these patterns are not yet understood. A better understanding of bulbil 

longevity and desiccation tolerance is needed to assess over-land dispersal. The efficacy of 

chemical treatments and other control methods has been researched by multiple groups with 

results showing moderate control of starry stonewort (Glisson et al. 2018, Pokrzywinski et al. 

2021, Wersal 2022). More research on control methods and phenology of starry stonewort is 
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needed to form more concise management recommendations. So, in order to determine resource 

allocation patterns in N. obtusa and how it responds to management this project covers: 

Phenology 

1) Investigate the seasonal phenology of N. obtusa over two growing seasons to determine 

statistical relationships between environmental factors and growth. 

H1: Aboveground biomass of Nitellopsis obtusa in Lake Koronis will be greatest in late summer 

(August) due to increased temperatures and improved light availability. 

H2: Subterranean bulbil production in Lake Koronis will be greatest in late summer (August) to 

early fall (September) 

Management 

Lake Koronis has an operational control program designed to reduce the abundance of 

Nitellopsis obtusa as part of this program the areas that do not undergo management and serve as 

a non-treated reference population.  Therefore, I will test the hypothesis of what happened if 

managers did nothing. 

H3: Biomass and bulbil densities will be higher in areas that do not undergo routine management.   

H4: The herbicide diquat has activity on N. obtusa and applications under normal management 

scenarios will result in less biomass. 
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Chapter II 

Phenology and Biomass Allocation of Nitellopsis obtusa Collected from Lake Koronis in 

Stearns County, Minnesota 

Introduction 

 Phenology is defined as the study of the seasonal timing of critical life stages in plants, 

whereby the allocation of biomass and other resources such as carbohydrates are fundamental 

aspects during these life stages (Wersal and Madsen 2018). In most cases, aquatic plants will 

display distinct seasonal patterns in biomass and carbohydrate allocation, wherein storage peaks, 

and then is depleted after plant growth has occurred (Madsen 1991). Phenological studies offer 

baseline data on the growth patterns of target species which is essential to creating management 

strategies for invasive species by identifying the optimum times in the plant's life cycle and 

implementing control methods during that time (Madsen 1991, Madsen 1993, Wersal et al. 2011, 

Wersal et al. 2013, Wersal and Madsen 2018). 

Nitellopsis obtusa (Desv.) J. Groves (starry stonewort) is a green macro alga native to 

Eurasia in the family Characeae (Groves 1919). Starry stonewort can grow from the sediment to 

30-120 cm in the water column with a slender to robust axis approximately 0.7-2mm in diameter, 

depending on growing conditions (Larkin et al. 2018). Branchlets form from the main stem at the 

nodes in whorls of 5-8 branchlets with each branchlet consisting of 2-3 segments with a total 

length up to 9 cm. Starry stonewort is dioecious and on the nodes of the branchlets gametangia 

appear in pairs or in some cases solitarily. The antheridia are 0.8-1.5 mm in diameter and orange 

to bright red in color, while the oogonia are bright red to light green and almost spherical in 

shape (Groves, 1919, Boissezon et al. 2017, Larkin et al. 2018). The oogonia have yet to be 

observed in North America (Sleith et al. 2015, Larkin et al. 2018). 



14 

Starry stonewort forms star-shaped bulbils, from which the common name is derived, as a 

way of asexual reproduction as well as an organ for spatial and temporal dispersion (Bharathan 

1987). White bulbils form beneath the sediment along the nodes of the rhizoid, and green bulbils 

form along the main axes and branchlet nodes (Bharathan 1987). While starry stonewort is able 

to reproduce both vegetatively and sexually it appears to undergo vegetative reproduction more 

frequently in both its native and invasive ranges (Larkin et al. 2018). In its invaded range, starry 

stonewort grows in similar calcareous, neutral to basic pH conditions as its native range, 

however it is found more in mesotrophic to eutrophic systems (Larkin et al. 2018). These 

invasive populations grow in large monospecific mats with little co-occurrence of other 

macrophytes (Larkin et al. 2018). 

Invasion of North America began around 1978 in the St. Lawrence River where starry 

stonewort was seen to be growing throughout the littoral zone, but with the greatest abundance at 

3 to 5 m. It has been suggested that starry stonewort first arrived in ship ballast water (Geis et al. 

1981). It has since spread through New York primarily to waters near Lake Ontario and the St. 

Lawrence River (Sleith et al. 2015). In 1983 it was found in the St. Clair-Detroit River system at 

depths of 0.9 to 3.4 m and current velocities of 0 to 51.8 cm s-1 (Schloesser et al. 1986). The 

current invaded range includes The St. Lawrence River, the St. Clair-Detroit River system, Lake 

Ontario, Lake Erie, Lake Huron, Michigan’s Lower Peninsula, New York, Vermont, 

Pennsylvania, northern Indiana, Wisconsin, and as of 2015 Minnesota (Mills et al. 1993, Sleith et 

al. 2015, Midwood et al. 2016, MISIN 2017).  

The first occurrence of starry stonewort in Minnesota was in Lake Koronis in 2015 and 

has since spread to 20 other lakes and the Mississippi River. The likely cause of overland 

dispersal in the U.S. are boats and boating equipment transporting the bulbils and vegetative 
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fragments of starry stonewort (Larkin et al. 2018). Lakes lacking boat launches were surveyed 

within heavily starry stonewort infested areas and did not detect presence of the species (Sleith et 

al. 2015). The life history of starry stonewort in MN was first documented by Glisson et al 

(2022); however, a thorough assessment of phenology has not been done. Therefore, the 

objectives of this project were to 1) document the seasonal life history of starry stonewort 

growing in Lake Koronis, and 2) determine relationships between starry stonewort growth and 

seasonal environmental factors. 

 

Materials and Methods 

Study Location 

The study was conducted on Lake Koronis, near Paynesville, MN (45.3298° N, 94.6986° 

W) during the growing seasons of 2020 and 2021. Lake Koronis is a 1,201-hectare lake with a 

maximum depth of 40 meters. Within the 476-hectare littoral zone macrophytes such as 

Vallisneria americana Michx., Ceratophyllum demersum L., Lemna minor L., and Nymphaea 

odorata Aiton can be found. Four plots were chosen as sampling locations on Lake Koronis 

based on moderate to high N. obtusa densities, distance from management plots, and water depth 

that was conducive for sampling (Figure 1) Plots 1, 3,5, and 6 were sampled while plots 2 and 4 

were used as backups in case the other plots were unavailable.  

Biomass Sampling 

This study followed the phenology sampling methodology as outlined by Wersal and 

Madsen 2018.  Thirty biomass samples were collected using a 0.018 m² PVC coring device 

(Madsen et al. 2007) every three weeks beginning in late April and continuing to ice cover 

during the growing seasons of 2020 and 2021. Samples were taken from the 4 corners of a boat 
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and then the boat was allowed to drift to a new location within a plot, where 4 more samples 

were collected; this sampling methodology was repeated until 30 samples were harvested in each 

plot. Collected biomass samples were rinsed in a 19 L bucket with a 4 mm² mesh bottom to 

remove sediment from the plants and to retain bulbils. Once rinsed, samples were placed in a 3.8 

L zip top bag and stored in a cooler, on ice, for transport back to the lab. At the lab samples were 

washed and separated into aboveground biomass, belowground biomass (rhizoids), and bulbils. 

Biomass samples were placed in paper bags and placed in a constant temperature oven at 48°C 

for at least 48 hours to dry completely. After the samples were dry, they were weighed to 

determine biomass (g DW m-2) based on the area of the coring device.  Bulbils were counted, 

and density determined for each sampling time across both seasons.   

Environmental Sampling 

Environmental data was recorded once every 3 weeks during biomass harvesting to 

determine relationships between environmental factors and N. obtusa growth.  A LI-COR LI-

1500 light meter was used to collect both ambient and submersed light in 0.5 m intervals from 

the water surface to the bottom sediment. The light profile was used to calculate light 

transmittance, with light transmittance being the percentage of light in the water column of the 

light available above the surface. Water temperature (°C) and pH measurements were made 

using a Hydrolab HL7 Sonde at a similar depth profile as LI-COR measurements.  Additionally, 

temperature sensors (HOBO Pendants, Onset Computer Corporation), were deployed at three 

intervals (bottom, middle, and top of the water column) in the center of each plot by anchoring a 

large buoy to the bottom of the lake.  The pendant sensors were affixed to the anchor chain of 

each buoy in each plot.  The pendant sensors recorded temperature (°C) in one-hour intervals 
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throughout both growing seasons.  The buoys and pendant sensors were deployed from April to 

October per the permit issued by the Stearns County Sheriff’s Department.     

Data Analysis 

Monthly averages for biomass, bulbil density, and environmental data were computed for 

each site and analyzed together. Data were analyzed by fitting mixed models using the mixed 

procedure method in SAS (Litell et al. 1996) to determine relationships between environmental 

factors and N. obtusa biomass and bulbil density. Above and belowground biomass and bulbil 

densities were included as the dependent variables. Water temperature, pH, submersed light, and 

light transmittance, and year were included as the independent variables in all models. Site was 

included as a random effect in the model to account for its influence on results. All terms 

included in the analyses were linear. Data are reported as means (± 1 SE) and analyses were 

conducted at an α≤ 0.05 significance level and displayed graphically to show trends and 

relationships (Wersal et al. 2006, Wersal et al. 2011, Wersal et al. 2013).   

Results 

Environmental factors 

 Water temperature was highest between June and August in both years and steadily 

declined until sampling ended in November of each year (Figure 2). In 2020 pH had peaked at 

8.6 in July and again in September with a yearly range of 8.0 to 8.6 (Figure 2). Meanwhile, in 

2021 pH peaked at 8.6 in late June and slowly dropped to 5.8 in November with a yearly range 

of 5.6 to 8.6 (Figure 2). Light transmittance ranged between 15.8 to 45.8% indicating enough 

light was reaching the bottom sediments to sustain growth of submersed plants (Figure 2).  

Seasonal Biomass 
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 Both total and aboveground biomass were higher in 2020 than in 2021 with maximum 

total biomass being 230 g m⁻² and 157 g m⁻² respectively. Maximum aboveground biomass was 

224 g m⁻² and 196 g m⁻², respectively for 2020 and 2021 (Figures 3). Rhizoid biomass was lower 

in 2020 than in 2021 with a maximum of 0.50 g m⁻² in 2020 and 0.71 g m⁻² in 2021. Maximum 

biomass and bulbil density was achieved in early to mid-autumn in both years (Figures 3 and 4). 

Peak bulbil biomass was lower in 2020 than in 2021 at 4.6 g m⁻² and 14.7 g m⁻², respectively 

(Figure 3). Bulbil density was lower in 2020 than in 2021 with a peak average density of 1,229 

m2 in 2020 and 5,211 m2 in 2021 (Figure 4). Bulbil densities ranged from 0 to 156,944 m-2 with 

an average annual density of 1,537 m-2 (Figure 4).  

There were multiple significant relationships between the seasonal biomass of starry 

stonewort and the environmental factors measured (Table 1). Total biomass was positively 

related to temperature (p<0.01) and light transmittance (p<0.01). Total biomass had significant 

negative relationships with pH (p<0.01). Aboveground biomass had significant positive 

relationships to temperature (p<0.01) and light transmittance (p<0.01). The significant negative 

relationships for aboveground biomass were pH (p<0.01). There were no significant 

relationships between rhizoid biomass and any of the environmental factors tested, in fact rhizoid 

biomass comprised less than 0.9% of total biomass on average. Bulbil biomass was negatively 

related to pH (p<0.01). Bulbil density was also negatively influenced by pH (p<0.01). However, 

bulbil density was positively related to light transmittance (p=0.04).  

Discussion 

 This study corroborates similar findings stating that starry stonewort has late season 

growth patterns in its invaded range, particularly, low biomass early in the year, an increase 

through the summer, and a peak in the fall (Geis et al. 1981, Schloesser et al. 1986, Nichols et al. 
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1988, Glisson et al. 2022). This study did not continue to sample through the winter underneath 

the ice, however green tissues has been observed underneath the ice in Minnesota lakes (Glisson 

et al. 2022). Data from this study indicated that the growth cycle of starry stonewort is dependent 

on water temperature and light transmittance; both factors affecting when peak biomass occurs 

and when senescence begins. Biomass peaked when temperature ranged from 7.4-8.8 °C in 2020 

and 12.5-15.2 °C in 2021. Unlike most macrophytes, the growth of charophytes like starry 

stonewort has been seen to be affected by pH and even shows preference to growing in areas of 

moderate to high pH (Pełechaty et al. 1990, Simons and Nat 1996). 

Bulbil biomass and density followed a seasonal pattern of abundant bulbils early in the 

year with declines in early summer as bulbils were sprouting and resources allocated to 

aboveground growth (Figure 4). Beginning in July of each year bulbil densities began to 

increase, and bulbils were being produced until the end of the sampling period in autumn. In the 

2021 season there was a much higher increase in bulbil production from the 2020 season. Bulbils 

are able to persist in the sediment for multiple years and as such could replenish the current 

population present for multiple years (Glisson et al. 2022). Given the littoral zone in Lake 

Koronis infested with starry stonewort is 324 ha there is an average of 4,979,880,000 bulbils 

produced each year with a possible maximum of 508,498,560,000 bulbils produced. The amount 

of bulbils produced each year and those already in the sediment will take several years of 

management to reduce the propagule bank to an unsustainable level or at the very least be able to 

reduce management efforts to a minimum. 

Starry stonewort has a late season peak in biomass implying a potential niche this species 

could occupy; allowing coexistence and limited competition with native species (Glisson et al. 

2022). However, other species such as Hydrilla verticillata (L.f.) Royle have similar late season 
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peaks in biomass and turion production but is an aggressive invasive species (Owens and 

Madsen 1998). Bulbil production provides the biggest obstacle for management as current 

chemical treatments effective on aboveground biomass have little to no effect on bulbils already 

in the sediment, and bulbils provide the ability for rapid regrowth after treatment or the year 

following (Glisson et al. 2018).  

The current study indicates that management activities in May and early June would 

target less aboveground biomass and times when bulbil production is limited. Future research 

should focus on species specific treatments of starry stonewort that affect bulbil biomass or 

bulbil production as well as the effects starry stonewort has on native plant populations and 

whether or not it fills a previously empty niche. 
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Table 1. Solutions for fixed effects of the mixed procedures model analyzing Nitellopsis obtusa 

biomass and environmental factors. 

Tissue Effect t-value p-value 

Total Biomass Temperature 6.33 <0.01 

 pH -3.95 <0.01 

 Light Transmittance 3.12 <0.01 

    

Aboveground Biomass Temperature 6.56 <0.01 

 pH -3.54 <0.01 

 Light Transmittance 3.05 <0.01 

    

Rhizoid Biomass Temperature -1.94 0.05 

 pH -1.05 0.29 

 Light Transmittance 1.50 0.13 

    

Bulbil Biomass Temperature -0.46 0.64 

 pH -3.31 <0.01 

 Light Transmittance 1.40 0.16 

    

Bulbil Density Temperature -0.39 0.69 

 pH -4.18 <0.01 

 Light Transmittance 1.99 0.04 
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Figure 1. Phenology sample plots for Lake Koronis during the 2020 and 2021 growing seasons. 

Plots 1, 3, 5, and 6 were sampled while plots 2 and 4 were used as backups in case the other plots 

were unavailable. 
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Figure 2. Mean (± 1 SE) seasonal fluctuations of temperature (°C), pH, and light transmittance 

(%) measured from 4 plots on Lake Koronis in Stearns County, Minnesota from April to 

November 2020 and 2021. 
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Figure 3. Mean (± 1 SE) total, aboveground, rhizoid, and bulbil biomasses of Nitellopsis obtusa 

harvested from 4 plots on Lake Koronis in Stearns County, Minnesota from April to November 

2020 and 2021. 
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Figure 4. Mean (± 1 SE) bulbil density of Nitellopsis obtusa harvested from 4 plots on Lake 

Koronis in Stearns County, Minnesota from April to November 2020 and 2021. 
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Chapter III 

Small Plot Evaluations of Aquatic Pesticides for Control of Starry Stonewort (Nitellopsis 

obtusa) in Lake Koronis, MN 

 

Introduction  

Nitellopsis obtusa (starry stonewort) is a green macroalga native to Eurasia in the family 

Characeae (Groves 1919).  Starry stonewort forms star-shaped bulbils, which the common name 

is derived from, as a means of asexual reproduction and for spatial and temporal dispersion. 

White bulbils form beneath the sediment along the nodes of the rhizoid, and green bulbils form 

along the main axes and branchlet nodes (Bharathan 1987). While starry stonewort is able to 

reproduce both vegetatively and sexually it appears to undergo vegetative reproduction more 

frequently in both its native and invasive ranges (Larkin et al. 2018). Reductions in macrophyte 

species richness has been observed at various depths and locations in the invaded range of starry 

stonewort (Brainard and Schulz 2017, Harrow-Lyle and Kirkwood 2022). 

Its current invaded range includes the St. Lawrence River, the St. Clair-Detroit River 

system, Lake Ontario, Lake Erie, Lake Huron, Michigan’s Lower Peninsula, New York, 

Vermont, Pennsylvania, northern Indiana, Wisconsin, and as of 2015 Minnesota (Mills et al. 

1993, Sleith et al. 2015, Midwood et al. 2016, MISIN 2017). The first known occurrence of 

starry stonewort in Minnesota was in Lake Koronis in 2015 and has spread to 18 other lakes and 

the Mississippi River (MNIWL 2022). The likely cause of overland dispersal in the U.S. are 

boats and boating equipment transporting the bulbils and vegetative fragments of starry 

stonewort (Larkin et al. 2018). Lakes lacking boat launches were surveyed within heavily starry 

stonewort infested areas and did not detect presence of the species (Sleith et al. 2015).  

https://www.sciencedirect.com/science/article/pii/S0304377017303820#bib0050
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Starry stonewort like other macrophytes pose multiple challenges for management (Madsen 

1993, Hussner et al. 2017, Glisson et al. 2018). The importance of understanding the efficacy of 

control methods is imperative for the management of invasive species in a cost-effective manner 

while still achieving management goals. Currently sufficient research is lacking on the effective 

management strategies for starry stonewort. Mechanical harvesting has seen limited success as 

starry stonewort regrew rapidly after harvesting events (Pullman and Crawford 2010, Glisson et 

al. 2018).  

Commonly used pesticides for control of starry stonewort and other algae include copper-

based algaecides (Lembi 2014, Glisson et al. 2018, Wersal 2022). Copper algaecides can differ 

in efficacy and in the species targeted based on the formulation. Such as, chelated copper 

formulations having increased efficacy on planktonic and filamentous algae when compared to 

copper salt formulations (Bishop and Rogers 2012, Calomeni et al. 2014, Iwinski et al. 2016, 

Pokrzywinski et al. 2021). 

The efficacy of herbicide applications is limited by concentration and exposure times (CET) 

leading to decreased efficacy of those products. To overcome CET issues herbicide combinations 

have been utilized to reduce the exposure time needed for effective control (Madsen et al. 2010).  

Improved efficacy for copper and non-copper combinations on submersed macrophytes have 

also been documented (Sutton et al. 1970, Sutton et al. 1971, Pennington et al. 2001, 

Pokrzywinski et al. 2021). However, underground bulbils can survive treatment from contact 

herbicides and grow into new aboveground structures. 

 Diquat has seen efficacy on multiple taxa of green algae, such as Selenastrum 

capricornicum, with sensitivity being species specific. (Phlips et al. 1992, Peterson et al. 1997). 

Numerous filamentous green algae, including Cladophora glomerata, have also shown 
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sensitivities to diquat at ≤ 1 mg L⁻¹ (Robson et al. 1976). More recently diquat has shown 

efficacy in small-scale trials on starry stonewort (Wersal 2022); where diquat and herbicides 

containing diquat led to >95% biomass reductions four weeks after treatments. 

Other studies reported activity of copper, non-copper, and pesticide combinations on starry 

stonewort (Pokrzywinski et al. 2021, Wersal 2022). A lab-based study as well as a field study on 

Lake Koronis of copper algaecides found similar effective control of starry stonewort (Glisson et 

al. 2018, Glisson et al. 2022a). All of these studies have shown promising results for the 

chemical control of starry stonewort using copper and other herbicides in combination with 

copper, and as such scaling up to and corroborating field trials is appropriate. Therefore, the 

objectives of this field demonstration are to 1) verify copper efficacy in small plots at the lake 

scale; 2) evaluate efficacy of diquat applied alone or in combination with copper under field 

conditions to control starry stonewort. To our knowledge this is the first field evaluation of 

diquat for use on starry stonewort. 

 

Materials and Methods 

Site Description 

The field demonstration took place on Lake Koronis, near Paynesville, MN (45.3298° N, 

94.6986° W) during the growing seasons (June to September) of 2020 and 2021. Lake Koronis is 

a 1,201-ha lake with a maximum depth of 40 meters and a littoral zone that encompasses 476 ha. 

Lake Koronis has had starry stonewort for the longest known period of time (since 2015) in 

Minnesota and has a well-established population in regard to biomass and bulbils. Within the 

476-hectare littoral zone macrophytes such as Vallisneria americana, Ceratophyllum demersum, 

Lemna spp., Potamogeton spp., and Nymphaea odorata can be found. Currently, starry stonewort 
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is present in 324 ha or 68% of the littoral zone. In 2020 approximately 51 ha were undergoing 

management for starry stonewort via copper triethanolamine complex (25 ha), diquat (15 ha), 

and copper triethanolamine complex + mechanical pulling (11 ha). In the 2021 roughly 55 ha 

were treated for starry stonewort via copper triethanolamine complex (40 ha), diquat + copper 

triethanolamine complex (6 ha), and copper triethanolamine complex + mechanical pulling (9 

ha). Six plots were established in 2020 and 2021 as part of the operational management program 

for starry stonewort in order to evaluate chemical treatments (Table 1).  

 

2020 Field Demonstration 

Prior to herbicide applications, 15 biomass samples were randomly harvested from two 

copper plots, two diquat plots, and two reference plots using a PVC coring device (Madsen et al. 

2007). Pretreatment sampling occurred on 8 July 2020. Harvested samples were placed into 

individually labeled Zip-loc bags and stored on ice for transport to the Aquatic Weed Science 

Lab at Minnesota State University, Mankato for post-processing. In the lab, samples were rinsed 

and sorted to aboveground biomass and bulbils. Bulbils were counted at the time of biomass 

sorting to estimate density (N m-2). Afterwards each tissue type was put into labeled paper bags 

and dried in a forced air oven at 48 C for at least 48 h to obtain g DW m-2 for aboveground 

biomass.  Following the pretreatment assessment, copper (copper ethanolamine complex) or 

diquat was applied by a licensed applicator to the plots during the week of 13 July 2020. Water 

samples were collected at the time of application, 1 hour after treatment (HAT), 3 HAT, 6 HAT, 

24 HAT, and 48 HAT from both diquat plots. Water samples were shipped to Pace Analytical 

(Minneapolis, MN) for diquat residue determination. Residues were used to estimate exposure 

time of starry stonewort to diquat. All diquat residue samples from Lake Koronis were combined 

to model the overall diquat exposure. Copper residues were not collected as part of this study. At 
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four (12 August 2020) and eight (12 September 2020) weeks after treatment (WAT), 15 biomass 

samples were collected from each plot in a similar fashion as pretreatment samples to assess post 

treatment efficacy. Samples were collected and processed in a similar manner to the pretreatment 

samples.  

 

2021 Field Demonstration 

In summer of 2021 two plots were chosen for copper treatment, two plots for copper + diquat 

treatments, and two plots for non-treated references. Sampling and processing methods in 2021 

were similar to those in 2020. Pretreatment sampling for the 2021 season occurred 1 July, 4 

WAT occurred 10 August, and 8 WAT occurred 5 September. After the pretreatment assessment, 

copper (copper ethanolamine complex) and copper + diquat was applied by a licensed applicator 

to the plots during the week of 12 July. Water samples were not taken for residue determination 

during the 2021 season as general water exchange patterns were established in the treatment 

plots during the 2020 season. 

 

Statistical Analysis 

Biomass data did not meet the assumption of normality according to a Shapiro-Wilk test. 

Therefore, data were subjected to a Kruskal-Wallis test within plant tissue type, sampling times, 

and year. If a significant treatment effect was detected means were separated using a Dunn’s All-

Pairwise Comparison test. All analyses were conducted at the α≤0.05 significance level. 

Additionally, an exponential decay regression model was used to model diquat dissipation over 

time in order to estimate an overall diquat half-life for the herbicide treatments conducted in 

2020. 
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Results and Discussion 

2020 Field Demonstration 

At the start of the 2020 season plots had similar levels of aboveground biomass and 

similar bulbil densities. Aboveground biomass was more effectively controlled by treatments of 

copper algaecide where a 96% (p<0.001) reduction was seen by 8 WAT (Figure 1). Bulbil 

production in the copper plots had increased from 105.6 m-2 during the pretreatment sampling to 

524.1 m-2 by the 8 WAT sampling period (Figure 2). Bulbil production was prolific at the end of 

this season and preventing or limiting this excessive production of bulbils is imperative for the 

control of this species. 

Applications of diquat showed no reductions in aboveground biomass during the 2020 

season (Figure 1). By 4 WAT aboveground biomass in the diquat treated plots increased by 

198% when compared to the reference plots (Figure 1). Throughout the study period there were 

no significant changes in bulbil density in the diquat treated plots (Figure 2). Diquat residue 

analysis indicated that water exchange and diquat dilution was rapid within treated plots (Figure 

3). Under the assumption that the target concentration of 0.37 mg L-1 was achieved, 52% of the 

diquat was lost by 1 HAT and 98% was lost by 6 HAT. The estimated half-life of diquat was <2 

h among all treated plots on Lake Koronis. 

The efficacy of diquat is greatly affected by the concentration exposure time (CET) 

relationships, or the length of time a lethal dose of the herbicide is maintained near target plants. 

In lab trials the 0.37 mg L-1 concentration of diquat with a 12 h exposure time reduced starry 

stonewort biomass (Wersal 2022). During the field demonstration water exchange and diquat 

dilution limited this exposure time to 2 h thereby impacting the efficacy of diquat. The efficacy 
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of future pesticide applications will be dependent on the rapid dilution and off target movement 

of that herbicide. Additional water exchange studies are needed to characterize bulk water flow 

in more areas of the lake. This information will be crucial in developing more effective treatment 

recommendations, and better timing of application. Additional research is needed on other 

copper formulations, herbicides, and pesticide combinations. 

 

2021 Field Demonstration 

 Aboveground biomass was similar in all plots during the pretreatment sampling event 

(p=0.41). By 4 WAT the copper plots showed a 78% reduction in aboveground biomass when 

compared to the reference plots (Figure 4). Regrowth was observed by WAT however, biomass 

was still lower than non-treated reference plots. Copper applications resulted in an 82% 

reduction in bulbil densities by 4 WAT, potentially due to heavy damage to aboveground 

structures, preventing the allocation of resources to bulbil production (Figure 5). Though, by 8 

WAT bulbil production had recovered when compared to untreated reference. Combinations of 

copper + diquat resulted in 75% reduction of aboveground biomass by 4 WAT (Figure 4). Unlike 

in the copper plots, there was no indication of regrowth in the combination plots at 8 WAT. The 

combination plots had greater bulbil densities than either the copper or reference plots at 1985.2 

m-2 (Figure 5). By 4 WAT the bulbil density had more than doubled (5035.2 m-2) in these plots 

and stayed near that level by 8 WAT. This wide discrepancy is due to the high spatial variability 

seen in bulbil production. 

While management of algae has been successful for decades using copper compounds the 

bulbils of starry stonewort have shown to be problematic (Glisson et al. 2018). This is due to the 

inability of copper algaecides to reduce the viability of starry stonewort bulbils either by 
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inhibiting sprouting or the direct destruction of bulbils (Glisson et al. 2018). A variety of copper 

formulations were found to have negatively affected the viability of bulbils, but this was not 

confirmed viability via sprouting experiments (Pokrzywinski et al. 2021). The ability of starry 

stonewort to recover from management via bulbils is cause for serious consideration when 

developing management plans. As we currently know there are no workable strategies to prevent 

bulbil formation in established populations of starry stonewort. 

Observations in this study corroborated the findings of another study on Lake Koronis in 

that a single algaecide application was not enough to prevent regrowth or regeneration via bulbils 

of starry stonewort (Glisson et al. 2018). An integrated approach to management may be the best 

option until application timing can be optimized (Glisson et al. 2018). An understanding of water 

exchange is needed, as well as a thorough analysis of starry stonewort’s seasonal phenology 

(Glisson et al. 2022b) over multiple years to optimize the timing of treatment and subsequently 

the efficacy of treatment. 

The overall impacts of management must be weighed against the decision to do nothing. 

When evaluating management, the assumption is erroneously made that doing nothing is 

environmentally neutral. In dealing with non-native aquatic species, the environmental 

consequences of doing nothing may be high, possibly even greater than the effects of 

management (Madsen 1997). Unmanaged, these species can have severe negative effects on 

water quality, native plant distribution, abundance and diversity, and the abundance and diversity 

of aquatic insects and fish (Madsen 1997). If left unmanaged, the dense growth of starry 

stonewort will likely extirpate native aquatic plants from those areas (Larkin et at. 2018). Starry 

stonewort has been seen to reduce the species richness of macrophytes in several lakes within its 

invaded range (Brainard and Schulz 2017, Harrow-Lyle 2022). It has been speculated that 
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infestations of starry stonewort may limit fish spawning habitat, as well as limit the long-term 

viability of benthic organisms (Brainard and Schulz 2017). These impacts are cause for concern 

for managers and stakeholders alike. 

 Lake Koronis has a 476 ha littoral zone of which 324 ha have starry stonewort. No more 

than 55 ha were managed for starry stonewort in the 2021 season leaving 269 ha of starry 

stonewort unmanaged. In the current study one application of copper or copper + diquat was 

enough for nuisance management when compared to non-treated reference areas, rather than the 

alternative of no management which will lead to an increased population in future years. 

Management projects should focus on maintaining current levels of starry stonewort by treating 

at least once a year only if multiple treatments are not feasible. However, multiple treatments 

should be used to reduce starry stonewort levels until more effective control methods are found 

or until a more accurate timing for treatment can be utilized. Research should focus on the 

efficacy of various copper formulations as well as combinations with other pesticides. While also 

investigating the hydrological properties of the water bodies that are to be treated. 
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Table 1. Herbicide and treatment rates for starry stonewort control in small plots in Lake 

Koronis. 

 

 

 

 

 

 

 

 

 

Year Plot Hectares 
Average 

Depth (m) 

Copper Rate 

(mg/L) 
Diquat Rate 

(mg/L) 

2020 2B 3.1 2.0  0.37 

2020 3B 2.3 2.2  0.37 

2020 A4 1.3 1.4 1.0  

2020 13 1.3 1.2 1.0  

2021 13 1.3 1.2 1.0  

2021 6B 1.7 2.6 1.0  

2021 2B 3.1 2.0 1.0 0.37 

2021 3B 2.3 2.2 1.0 0.37 
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Figure 1. Mean (± 1 SE) aboveground biomass of starry stonewort at pretreatment, 4 weeks after 

treatment (4 WAT), and 8 weeks after treatment (8 WAT) with select herbicides, summer 2020. 

Bars with the same letter are not different according to a Dunn’s all-pairwise comparison test at 

an α≤0.05. All analyses were conducted within sampling time. 
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Figure 2. Mean (± 1 SE) bulbil density of starry stonewort at pretreatment, 4 weeks after 

treatment (4 WAT), and 8 weeks after treatment (8 WAT) with select herbicides, summer 2020. 

Bars with the same letter are not different according to a Dunn’s all-pairwise comparison test at n 

α≤0.05. All analyses were conducted within sampling time. 
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Figure 3. Exponential decay model of mean (± 1 SE) diquat residues from four plots in Lake 

Koronis following applications made on July 15, 2020 for starry stonewort control. 
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Figure 4. Mean (± 1 SE) aboveground biomass of starry stonewort at pretreatment, 4 weeks after 

treatment (4 WAT), and 8 weeks after treatment (8 WAT) with select herbicides, summer 2021. 

Bars with the same letter are not different according to a Dunn’s all-pairwise comparison test at n 

α≤0.05. All analyses were conducted within sampling time. 
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Figure 5. Mean (± 1 SE) bulbil density of starry stonewort at pretreatment, 4 weeks after 

treatment (4 WAT), and 8 weeks after treatment (8 WAT) with select herbicides, summer 2021. 

Bars with the same letter are not different according to a Dunn’s all-pairwise comparison test at n 

α≤0.05. All analyses were conducted within sampling time 
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Chapter 4 

Conclusion and Management Recommendations 

Phenology is the study of critical life stages in plants in relation to shifts in environmental 

factors during seasonal changes. Starry stonewort is a green macro alga in the family Characeae 

native to Eurasia. Much of the Midwestern United States has been invaded by this species. Starry 

stonewort has been seen to have late season growth patterns in its invaded range. This study 

found that this growth pattern was dependent upon water temperature and light transmittance 

both of which affect biomass production and senescence. It was hypothesized that peak biomass 

would occur in the late summer (August), however we observed biomass peak in November of 

2020 and October of 2021 with 230 g m⁻² and 157 g m⁻² of total biomass, respectfully. Bulbil 

production was similarly hypothesized to peak in late summer (August) as well as early fall 

(September) and like biomass the bulbil production peak was later in the year. Bulbil production 

declined in the early summer as sprouting and aboveground growth occurred; but by July of each 

year bulbil production increased rapidly until the end of the sampling period in autumn. Peak 

bulbil biomass and density was lower in 2020 with 4.6 g m⁻² and 1,229 bulbils m-2, and in 2021 

the biomass and density were 14.7 g m⁻² and 5,211 bulbils m-2. The average annual bulbil density 

was 1,537 bulbils m-2 and ranged from 0 to 156,944 bulbils m-2. The ability of starry stonewort to 

grow in dense mats and produce large quantities of bulbils contribute to the difficulty of 

controlling infestations. Bulbils are a method of spatial and temporal distribution that can allow 

for recolonization of previously treated areas.  

The chemical treatments and combinations of chemical treatments of starry stonewort has 

been under researched. As such, copper, diquat, and copper + diquat treatments were applied and 

evaluated on small plots in Lake Koronis, MN during the summers of 2020 and 2021. It was 
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expected that areas not regularly undergoing management would have higher biomass and bulbil 

densities, but in 2020 the reference areas were not significantly different from areas treated with 

diquat. In 2020 the copper plots and in 2021 the copper and copper + diquat plots were seen to 

have less biomass and bulbil densities than the reference plots. Applications of copper had more 

than 90% reduction of aboveground biomass by 8 weeks after treatment in 2020. Bulbil densities 

were not affected by copper treatments in 2020. Diquat in 2020 was not effective at reducing 

aboveground biomass or bulbil density at 4 and 8 weeks after treatment. In the diquat plots, 

bulbil densities ranged from 33.3 ± 33.3 to 4266.7 ± 3963.3 bulbils m-2 depending upon sample 

time and site. The lack of diquat efficacy was contributed to water exchange resulting in a half-

life of <2 h among all treated plots. In 2021, copper treatments had a 78% reduction in 

aboveground biomass at 4 weeks after treatment and 27% at 8 weeks. Bulbil density was also 

reduced by 4 weeks after treatment in the copper treated plots. While diquat alone did not have 

activity starry stonewort under normal management scenarios in 2020, the copper + diquat 

treated plots in 2021 had seen a reduction of 76% and 65% in aboveground biomass at 4 and 8 

weeks after treatment, respectfully. The combination plots had shown no reductions in bulbil 

densities. All plots, regardless of the treatment applied, had seen regrowth by 8 weeks after 

treatment. 

 While starry stonewort has late season peaks in biomass can imply a potential niche for it 

to occupy, this notion should be approached with caution as other species such as Hydrilla 

verticillata also have such seasonal peaks and are aggressively invasive. The biggest obstacle for 

the management of this species is bulbil production as treatments for aboveground structures 

have little to no effect on the sediment bound bulbils. The bulbils will then allow for rapid 

regrowth after treatment or recolonization the year following treatment. Since starry stonewort is 
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such a prolific bulbil producer and can regrow rapidly, new strategies are needed to target bulbil 

production, induce bulbil mortality, or gain long term control of aboveground biomass. This 

study found that one application of herbicides was not enough to prevent regrowth via bulbils of 

starry stonewort in Lake Koronis which was also seen by Glisson et al. (2018). Though, one 

treatment of copper or copper + diquat did provide short-term reduction of aboveground 

biomass, or nuisance control; which should be more preferable than the “do nothing option” 

which will lead to an increased population in the coming years. If left unmanaged starry 

stonewort will lower the species richness of other macrophytes in the lakes it has invaded and 

may even limit fish spawning areas and the long-term viability of benthic organisms. Managers 

and stakeholders should be concerned of these impacts caused by an infestation of starry 

stonewort.  

 An integrated management plan with phenological timing should be used to gain the best 

control of this species. Management activities in May and early June would target smaller 

amounts of aboveground biomass and a time when bulbil production is limited as shown in 

Figure 1. At least one treatment in a year should be used at a minimum to maintain growth below 

a nuisance level. Until researchers find more effective methods of control, multiple treatments 

should be used per year to reduce starry stonewort levels. Currently, copper and copper + diquat 

have been seen to be effective agents of control until better treatments are found. The 

hydrological properties of the water body being treated should be investigated to avoid exposure 

times of chemical treatments being limited and ineffective. Future research should be focused on 

the efficacy of various copper formulations, combinations of copper and other pesticides, and 

species-specific treatments of starry stonewort that affect bulbil biomass or bulbil productions.  
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Figure 1. Recommended management times for Nitellopsis obtusa based on phenological timing. 

Arrows indicating ideal timing for treatments. 
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