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ABSTRACT 

 

 

This thesis proposed a soft-switched three-port bidirectional DC-DC converter for managing 

the power flow of a photovoltaic (PV) and battery system. 

The proposed converter consists of three ports connected to a PV panel, battery, and load. These 

three ports are interfaced through the high-frequency transformer and use phase-shift control to 

achieve soft-switching for all converter switches. 

Compared with the traditional multiport converters, the proposed three-port converter uses the 

least number of power switches, and zero-voltage switching (ZVS). Simulation and experimental 

results validate the design and effectiveness of soft switching and power flow control. The 

converter can work in different scenarios regardless of the availability of renewable energy and 

the battery's state of charge. 

 In addition, maximum power point tracking (MPPT) for renewable energy sources can be 

achieved for the renewable energy source while managing the power flow between three ports. 
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Chapter 1 : Introduction and Background 

1.1  Background 

 Natural energy sources such as petroleum, coal, natural gas, and nuclear, chemical reactions 

are decreasing daily worldwide at varying rates. After they have been employed extensively in 

various industries, including power generation and transportation, throughout the past several 

decades, those natural energy sources will run out sooner than expected, plus the environmental 

damages they created. Because of these two reasons, a couple of decades ago, the world started 

investing more and more in clean and sustainable energy sources such as solar and wind, plus those 

already existing, like hydro and biomass energy. The US Energy Information Administration 

(EIA) forecasts energy renewable resources contribution in electrical Power grid systems will 

continue increasing every year, especially non-hydroelectric renewable resources like solar and 

wind, to be the fastest-growing source of US electricity generation in years to come. 

 Distributed renewable energy sources will soon likely play a more significant role globally in 

the electric grid system. Clean energy sources or renewable energy in 2020 contributed 20% of the 

U.S. electricity generation and are growing fast compared to the other energy resources in the last 

decade, table1 shows the growth of RES in the previous decade. 

1.2 Renewable Energy Conversion System 

 1.2.1 PV System 

A photovoltaic (PV) system comprises one or more solar panels, an inverter, and other electrical 

and mechanical components that convert solar energy into electricity. PV systems come in various   



2 

 

sizes, ranging from small top-roof portable systems to massive utility-scale generation plants [1].  

Although PV systems can operate independently as an off-grid or Stand-Alone, often PV 

System is made up of several individual photovoltaic modules (or panels), usually of 12 volts with 

power outputs between 50 and 100+ watts each. These PV modules are combined into a single 

array to give the desired power output.  

1.2.1.1 PV Work Principle and Main Components 

The PV effect occurs when light from the Sun, composed of packets of energy called photons, 

falls onto a solar panel and generates an electric current. Each panel generates a fraction of 

energy but can be connected to other panels to generate more significant amounts of energy, for 

high-power applications or grid-tied conditions, the output power and voltage are generated by a 

group series and parallel combinations of PV cells (solar array). 

The electricity generated by a solar panel (or array) is direct current (DC).  Although many 

electronic devices, such as cell phones, laptops, and Hybrid and electric vehicles, use direct 

current electricity, they are designed to operate on the electrical utility grid, which delivers 

alternating current (AC).  As a result, before solar electricity can be injected into the grid for use, 

it should be converted from DC to AC using an inverter and injected into the grid. 

PV system has simple components such as a solar panel comprising several solar cells with 

semiconducting properties. And an inverter is a type of electrical device that receives direct 

current (DC) and transforms that into alternating current (AC). Racking refers to the structural 

system that secures the solar array to the floor rooftop [1]. 

E = h·c/λ                                                                                        (1.1) 
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where E is the energy absorbed in electron-volt (eV), h is planks constant (6.62 × 10-27 erg/s), 

c is light speed (3 × 108 m/s), and λ is the wavelength of light radiations.  

 

 

 

 

 

 

1.2.2 Wind System 

 Wind energy conversion systems (WECS) convert wind energy into mechanical energy. Then 

Wind turbine generators convert mechanical energy to electricity, and the Generated power is 

employed in various fields, industrial, commercial, or residential [2]. 

The progress of WECS   has been remarkable over the past several years. Turbines, machinery, 

drives, and protective devices have all undergone significant improvements because of the 

development of new technology [2]. Many different generators are available to power a wind 

turbine, including an induction generator, a double-fed induction generator, a permanent magnet 

synchronous (PMSG), etc. 

The generator receives the power generated by the wind turbine. Then the pulse width 

modulation converter is used to control the generator's rotational speed to get the maximum output 

power of the WECS, the generator-side converter. A grid-side inverter supplies the generator's 

output power to the grid.  

Figure 1.1 Solar energy conversion system interfacing with Grid Figure 1.1 Solar energy conversion system interfacing with Grid 
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 Wind energy conversion systems and solar energy conversion systems are becoming the most 

promising and reliable renewable energy in the future, due to many merits such as being 

environment-friendly, sustainable, and low running cost…etc., one option for distributing wind 

farms is to use them in flat or hilly terrain.  

  Also, the WCES is one of the most promising power sources in the future. The kinetic energy 

of wind captured by a turbine's blades per unit time (𝑃௢௨௧
 ) is proportional to the density of the air 

(ρ), the area swept by the rotor blades (𝜋𝑟ଶ), and the cube of the wind speed (𝑣௪௜௡ௗ
ଷ ) multiplied by 

an efficiency or power factor (𝐶௣
  ) as showing in equation 1.2. 

 𝑃 =
ଵ

ଶ
⋅ 𝜌 ⋅ 𝜋 . 𝑟ଶ. 𝐶௣(𝜆, 𝛽) ⋅ 𝑣௪௜௡ௗ

ଷ                                                             (1.2) 

Figure 1.2 below shows the WECS interconnection to the power system grid. 

 

Figure 1.2  Wind energy conversion system interfacing with Grid 

  1.2.3 Hydropower Capacity System:  

  The second most contributed source of clean energy in the United States last year was of US 

energy information Administration (EIA), since hydroelectric electricity is generated by water, 

hydroelectric power stations are often built on or near a body of water. The volume of water 

flowing and the change in elevation influence the amount of electricity produced in flowing water 
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Generally the more significant the water flow or, the greater height, the more energy can be 

generated by a hydroelectric plant [3]. 

  Hydroelectricity's percentage of overall electricity production in the United States has dropped 

over in recent times, primarily because of its impact on nature and biodiversity.  

  However, several hydroelectric power plants are incorporating with solar energy as an 

extended form of resource. There are mainly three types of hydroelectric power plants 

impoundment, diversion, and pumped storage [4]. 

1.2.4 Energy Storage Systems 

The growing demand for electric energy for residential to commercial, as well as the newly 

growing electric vehicle (EVs) industry, made it crucial to have the ability to store the energy. 

Since we have a continuous demand for electricity and some of the modern RES fluctuates 

depending on the weather or can only be generated electric power when the sun is shining, the 

need for electricity storage has increased rapidly [5]. Due to this reason, energy conversion and 

energy storage have drawn much interest from different energy consumption sectors. Energy 

Storage Systems (ESSs) are highlighted as a critical solution for mitigating the intermittent nature 

of RESs and providing the load or grid with an uninterruptible power supply (UPS) [6] [7].  

  Batteries are commonly used for storing electrical energy, ranging in size from the button cells 

used in watches to megawatt load leveling applications. Batteries can be divided into two 

classifications: electrochemical batteries and fuel cells. Fuel cells that utilize liquid fuels like 

methanol are referred to as primary batteries because they are typically not rechargeable and need 

to be recharged before they run out, making them unsuitable for repeatedly storing energy.      

Electrochemical batteries, such as Lead–Acid and Li-oxygen batteries, can have high energy 

storage, but their output power is limited. 
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1.3 Micro-grid with RESs and ESSs 

Micro-grids may be a future power system that solves the renewable energy technologies (RET) 

that are required to support the increasing deployment of distributed energy resources (DER), 

mainly small-scale combined heat and power (CHP) and small-scale RES. 

 The micro-grid system is a smaller scale of the smart grid. It is generally considered a single 

controlled entity, co of a central controller unit and a group of localized electrical consumers (or 

users) associated with RESs and energy storages plus transmission lines and other facilities as 

shown in Figure 1.3 [8]. 

Numerous installations throughout the globe are doing active experiments in the micro-grid 

domain are presented, and the primary benefits of micro-grids focus on three aspects flexibility of 

the power system,  the possibility to adjust the quality of power given to end users, and a more 

favorable environment small-scale renewable generation investments [9] [10].  

 

 

Figure 1.3 Typical Macro-grid schematic [8]. 
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 Micro-grids have other advantages, such as they can work in isolated mode and grid connected 

mode. A grid-connected mode is the one that the local utility grid (Micro-grid) is connected to the 

main grid at a point of common coupling that maintains voltage at the same level as the main grid, 

so that when RESs produce more electricity than the load, the surplus power is fed into the grid.  

It will remain on the grid unless there are some problems or maintenance need to be performed 

on the grid or other reasons to be disconnected. A switch can connect or disconnect the microgrid 

to (or from) the main grid automatically or manually.  

An island mode is not connected to the main grid, the local sources undertake the job of catering 

to the loads. 

Table I shows how much renewable energy has increased in the last decade [11].  

    

   Table I:   Increment of the electrical power source in the last decade  

       

 No.  Type of power  
Billion KW/H  % Increment in 

 

 
2010 2020  the last Decade  

 

 
 

Hydropower Capacity 260.20 291.11 12% 

 

 
 

Solar PV Capacity 1.21 90.89 7412% 

 

 
 

Wind power capacity 94.65 337.51 257% 

 

 
 

Biomass power Capacity 56.09 56.05 0% 

 

 
 

Geothermal Power Capacity 12.22 16.94 39% 

 

 
 

Total  424.37 792.50 87% 
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1.4 Outline of Thesis and Objectives    

 

Following the above introductions in chapter one, an outline of this thesis is given as follows. 

Chapter 2: Review of Three port DC-DC converters and related prior works, discussing more about 

the topologies Derivation and modeling techniques ending the chapter by summarizing. 

Chapter 3: The proposes DC-DC three-port converters for solar, and battery systems. The 

topology, operating principles, ZVS analysis, MPPT, and the power management control strategy 

and discussing the differences from the existing ones.  

Chapter 4: Simulation result, Experimental work describes the prototype used in the experimental 

setup to validate the simulation to achieve the design objective; a method of maximum power point 

tracking (MPPT) is developed to explain the operational optimization of the power source (solar 

energy). 

Chapter 5: Finally, this Thesis ends with conclusions, a summary of contributions, and 

recommendations for future work. 
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Chapter 2 : Review of Three port Converters and Related Works  

2.1 Topological Structure of TPCS 

   Traditionally, the renewable energy source is connected to the power system load or the 

micro-grid via a traditional DC-DC converter. The energy storage system is connected to the input 

port or output port of the conventional DC-DC converter via a bidirectional DC-DC converter for 

charging and discharging the ESS, as illustrated in Figures (a) and (b) below.  

   The core problem of these methods is their poor efficiency, as they need an extra converter 

for the ESS.  Furthermore, the multi-stage design may lead to bulk hardware, poor power density, 

and relatively of excessive cost [12].  

         

         (a) BDC is connected to the source side                                           (b) BDC is connected to the load side. 

              Figure 2.1 The traditional power electronics in RECS 

 

  In recent years, many TPC with typical structures, as shown in Figure 2.2 below, have been 

developed to integrate renewable energy sources and energy storage converters into a single 

converter that has two inputs: one is for the PV panel, and the other is for charging and discharging 

the ESS.  
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   The third port is the output port of the TPC, which might be directly linked to a DC load or 

the micro-grid through an inverter via a DC link capacitor. Numerous TPCs that are capable of 

MPPT and energy-storage charging and discharging. 

  In general, the TPC can be classified into three categories according to their coupling structure 

& galvanic isolation requirements, non-isolated topologies [16]-[23], partially isolated topologies 

[26]-[33], and fully isolated topologies [38]-[44]. 

2.2 The Operating Principles of the TPC 

 
Figure 2.2 illustrates the overall structure of a renewable energy generating system using a TPC. 

The general structure figure shows that the input ports are connected to the RES and battery, and 

the output port is connected to the load.  

 

Figure 2.2  The general structure of the TPC. 

 

Within the framework of the power-balance concept, the relationship between the three ports’ 

powers may be represented as follows:              

Pin = Pb + Po                                                                                                                       (2.1) 
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where Pin denotes the input power; Pb is the battery power, and Po is the output power. The TPC 

mainly has three operation modes which are basically depending on the source’s availability and 

the grid demand and can be categorized as follows. 

1. Single input dual output mode (illustrated in Figure 2.3 (a)): this is when the source of the 

power (Photovoltaic panel) produces more power than the load needs (PPv > PLd), then the 

extra energy will be used to charge the batteries (PPv–PLd), and in this case, the battery 

power will be more than zero PB > 0,  PPv = PB +  PLd.  

2. Dual input single output mode (illustrated in Figure 2.3 (b)): this mode occurs when the 

solar power is not sufficient to satisfy the load demand (PPv < PLd), then the battery 

discharge power to compensate the shortages of the power, PLd = PB + PPv. 

3. Single input single output mode (illustrated in Figure 2.3(c)): the solar power zero 

 (PPv = 0) the battery alone provides power to the load.  

According to converters’ control principles, N-1 independent control variables are required for 

an N-port converter [13], however, TPCS requires two independent control variables. Typically, 

one control variable must strictly and independently regulate the output port's voltage, while the 

other control variable must regulate either the PV or battery port's voltage. Notably, one of the PV 

ports and one of the battery ports must remain flexible to achieve power balance at any period. To 

summarize, TPCS requires at least "three power transmission branches and two independent 

control variables, it is evident that different power transmission branches are necessary for TPCS 

for different operation modes [13] [14]. 
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  (a)   Single input dual output mode                             (b) Dual input single output mode 

 

                                                                 (c) Single input single output mode 

Figure 2.3 The general architecture of three port converter operating modes  

 

Based on the three mods above and the control principles of the TPCs, there are two convenient 

paths for the power to be transmitted to the load, one is directly from the PV panel port to the load 

(P2L), also called primary power transmission path, and the other is from or through the battery to 

the load (B2L) also called secondary power transmission path, the arrays in Figure 2.3 shows 

power transmission diagram paths. Each branch's power transmission may be accomplished using 
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a unidirectional two-port dc–dc converter that requires a minimum of one independent control 

variable like duty cycle, frequency, phase, and so on [15].  

2.3 Analysis and Comparison of the Reported TPC  

2.3.1 Non-isolated TPC 

Non-isolated three-port converters have advantages and disadvantages, those types of 

converters can reduce the number of elements and have a much more compact design. That can be 

an advantage and disadvantage due to the direct connection of the converter element, it is only 

suitable for applications that do not require galvanic insulation [16], and also, those types of 

converters have limitations on the voltage gain, and that because the voltage conversion ratio's 

modulation flexibility is limited to the duty cycle. To address these issues, some proposed utilizing 

coupling inductor technology to increase the voltage conversation ratio [17], Figure 2.4 illuminates 

the three-port conversation.  

 

Figure 2.4 The general configuration of non-isolated TPC                  

                             

Numerous non-isolated three-port DC-DC converters with various control and modulation 

approaches have been published in the last few years. The conductor is the critical element in the 
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TPC, some of the proposed TPC uses a single inductor to increase the power density and decrease 

the TPC size, and while on the other hand, some utilize two or more inductors. 

 Because most of these converters are based on standard boost, buck, and buck-boost 

converters, their gain is limited. Several three-port DC–DC converters use linked inductors to 

increase the voltage conversion ratio to overcome this limitation. 

Figure 2.5 shows a typical non-isolated converter with a single inductor, that is proposed for 

PV and battery applications [16] [18], the proposed converters are derived from a dual-input 

converter by adding a new power flow path, which means adding a new control variable, different 

control techniques are used here to control the power flow between any two of the three ports [16]. 

    Figure 2.6 shows a novel non-isolated TPC proposed in [19], the proposed converter mixes a 

typical boost converter and a buck converter with an additional switch to control the output power. 

Figure 2.7 shows the proposed three port converter that combines an electronic circuit, which 

consists of a diode, a switch, and an energy storage system in parallel with the inductor, into a 

typical buck-boost converter, a two-switch single-inductor three-port converter proposed in [20], 

and examined in [21]. Additionally, this general cell can be classified into various conventional 

converters such as buck and boost converters, to develop new three-port converters, more details 

in [20]. 

     Figure 2.8 shows A three-port converter with three switches and three inductors is proposed in 

[22] by combining a two-inductor boost converter and a two-inductor buck converter and utilizing 

an extra inductor to achieve the voltage-second balance to all inductors. 

Figure 2.9 shows a three-port DC-DC converter with a high voltage conversion ratio based on 

a unidirectional three-state switching cell that has been proposed in [23], the proposed converter 

structure has natural properties that make all the converter switches operate under soft-switching 
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conditions throughout an extensive operating range and that decreased voltage stresses, resulting 

in an excellent overall efficiency this converter has many advantages not limited to such as high 

gain, high efficiency, and soft switching, all that were validated in the laboratory by a 500W 

prototype, more detail in [23].    

  

Figure 2.5 The proposed converter in [18].        Figure 2.6 The proposed converter in [19]. 

   

 Figure 2.7 The proposed converter in [20].            Figure 2.8 The proposed converter in [22]. 

 

Figure 2.9 The proposed converter in [23].                         
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2.3.2 Partially Isolated TPC 

Partly- isolated three-port converters, that use a high-frequency transformer to isolate one port 

from the other two ports, there are two connecting methods of the partially isolated converters 

depending on the isolated port, the source port or the load port, most of these types of converters 

usually have the source port and the bidirectional port connected directly, and then they are 

connected to the isolated load port through the transformer, while the other connected the 

bidirectional port with the load port then connect the combination through the high-frequency 

transformer to the source port Figure 2.10 illuminate the TPC configuration. In this type of 

converters, the high voltage gain can be obtained by a large turn ratio, these converters operating 

modes are DIDO or SISO, which make the energy storage system under continuous operation 

resulting in shortened  life of the energy system as well as make the overall system less reliable, 

below are some of the partly- isolated three-port converters. 

 

Figure 2.10 The general configuration of a partially isolated three-port converter 

Figure 2.11 shows a three-port DC–DC converter based on the half-bridge converter proposed 

and analyzed in [24] and [25]. The proposed converter is derived from the traditional half-bridge 

converter by applying an additional switch and a diode on the primary side of the transformer and 

using two switches to replace the diode in the output port.  
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All the switches on the primary side can operate under zero voltage switching for a wide range 

of operation conditions. Controlling the power flow between the three ports is accomplished by 

adjusting the duty cycles of the two primary side switches. 

Figure 2.12 also shows a buck-boost three-port DC–DC converter with a full-bridge switching 

cell, proposed in [26]. In the proposed converter, the primary site of the transformer is constructed 

in a way that makes it more compact to help eliminate the ripple current. At the same time, the 

secondary side uses a half-bridge switching cell. 

Also, the proposed TPC used phase shift with pulse width modulation technique as a simple 

way to distribute power among the converter ports. More details can be found in [26].  

Figure 2.13 shows a proposed partly-isolated three-port DC–DC converter for a stand-alone 

renewable power system application derived from the half-bridge converter in [27]. 

The bidirectional port consists of two input dividing capacitors plus the storage system and 

shares two switches with the input port to allow the biased DC current in the transformer to cause 

the power to flow between the input port and the bidirectional port. All ports' voltage is regulated 

through independent controllers and the two switches on the secondary side for synchronous 

regulation. 

A similar converter configuration has been reported in [28] with some modifications by adding 

post-regulation to replace the synchronous regulation in the converter.  All the obtained converters 

have the advantages of a reduced number of components and relatively simple configurations. The 

efficiency of these converters is relatively high as the power flow between any two of the three 

ports is in a single stage. 

Figure 2.14 shows a proposed converter different from the previous converters; in all the above 

examples, the integrated ports are the input and bidirectional ports in the primary site of a high-
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frequency transformer, isolated at the secondary side of the transformer. In this proposed novel 

partly isolated converter, the integrated ports are the bidirectional port, and the load is to the 

secondary side of the high-frequency transformer. The PV is isolated at the primary side of the 

high-frequency transformer. 

The detailed derivation of the proposed converter from the traditional half-bridge converter is 

introduced in [29]. The output circuit of the traditional half-bridge converter is detached first, and 

then a boost converter is inserted between the two detached outputs to provide the power flow path 

between the battery and the load. In the input port, a boost converter is applied to help reduce the 

ripples of the input current. All the switches in this converter can work under zero current 

switching conditions to reduce the switching losses and improve the converter's overall efficiency. 

 

Figure 2.11 The proposed converter in [24]. 

 

Figure 2.12 The proposed converter in [26]. 
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Figure 2.13 The proposed converter in [28]. 

 

Figure 2.14 The proposed converter in [29]. 

2.3.3 Fully Isolated TPC 

 
Fully isolated three-port DC-DC converters have completed good galvanic isolation because 

the power flows from one port to another through a multiple-winding high-frequency transformer. 

So, any port has its components, and most fully isolated converters use full-bridge or half-bridge 

converters and, in some cases mix of both. Usually, the structure of this type consists of a 

combination of a three full-bridge structure and a three-winding model that includes two additional 

series resonant circuits in the primary side of the transformer, to implement the soft switching of 

the switches to reduce the switching losses. One of the advantages of this converter from the non-

isolated and the partially isolated is that it can switch at a high frequency while maintaining 

realizable element values. Figure 2.15 shows this type of isolated TPC configuration.  
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Figure 2.15 The general configuration of the bidirectional, DC-DC converter 

 
Figure 2.16 shows the first fully isolated DC-Dc three-port converter was proposed at [30], the 

proposed converter consists of a combination of a three full-bridge structure and a three-winding, 

even though it was designed for use in hybrid fuel cell systems, it may also develop to be applied 

in other renewable energy applications such as photovoltaic production systems. Following the 

release of this converter, it attracted considerable interest from other researchers in developing and 

studying the converter performance, analyzing the control methods, loss analyses, and applications 

that will be using the converter. Then later on and to increase the efficiency converter's efficiency 

and minimize the input current's ripples, the proposed converter came after that, suggesting adding 

an inductor between the input source and the full-bridge structure in the input port [30]. 

 

Figure 2.16 The proposed converter in [30]. 
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Figure 2.17 The proposed converter in [31]. 

                                     

 Figure 2.17 above shows the proposed novel three-port DC converter presented in  [31]by 

substituting the full-bridge structures in the converter with three half-bridge structures. It is to be 

observed that this converter has three half-bridge circuits, one of which is a boost half-bridge 

converter that connects to the bidirectional port for the energy storage system's charging and 

discharging functions. The converter shows much improvement when working in single input 

double output mode. 

A novel isolated three-port DC-DC converter is presented in as [32]  shown in Figure 2.18. It 

is based on employing two current fed switching networks and two multi-resonant circuits as the 

input port and the bidirectional port, respectively, with a high-frequency transformer and using a 

full-bridge diode rectifier as the output port.   

 

Figure 2.18 The proposed converter in [32]. 
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Figure 2.19 The proposed converter in [33]. 

This converter is less expensive because it needs four switches instead of the more expensive, 

isolated converters mentioned above. Due to the use of inductors in all three ports, the converter's 

current ripples are also relatively low. Converters of different configurations can also be utilized 

to create three-port converters in addition to the half-bridge and full-bridge versions. Based on the 

conventional Cuk converter, a novel isolated three-port DC-DC converter with only three switches 

has been disclosed in [34]. As a fully isolated converter, it applies a three-winding transformer, as 

illustrated in Figure 2.19, to incorporate three Cuk converters. 

2.4 Summary 

This chapter provided an overview of novel topologies of three-port DC-DC converters that 

proposed to discuss how to benefit from using renewable sources for energy storage by using only 

one converter with two input sources and one output instead of the separate three converters. 

Several previous proposed TPC converters were reviewed by discussing their derivation and 

modulation techniques. The three-port DC-DC converters proposed during the past ten years are 

numerous, but depending on the application, construction, reliability, performance, cost of the 

control circuits, number of components, etc., they all have various advantages and disadvantages. 
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 Typically using a smaller number of power switching devices that minimizes the number of 

components in the Non-isolated TPC circuit, as well as the requirement to use a high-frequency 

transformer for isolated and partially isolated converters, the structure of the non-isolated can 

usually result in a lower cost than the partially isolated and isolated converters. 

Reliability is an important aspect to consider when assessing converters' performance. For all 

converters, dependability will decline throughout the operation time under consideration. The 

reliability of the converter decreases with the number of switches it uses at the module. As the 

cost, the more switches a converter utilizes at a module, the less reliable the converter becomes. 

All the three-port converters proposed are adept at MPPT control and ZVS and can meet the 

necessary load demand with an energy storage system, various restrictions can be applied to the 

converters' use because of their design.  

For small power applications, such as portable devices, the non-isolated TPCs are suitable but 

not suitable for high voltage applications requiring strong galvanic isolation; in these cases, 

partially isolated and fully isolated TPCs are preferable options. 
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Chapter 3 : The Proposed TPC 

3.1 The Proposal Topology  

 

Figure 3.1 Topology of the proposed Three-port DC-DC converter. 

The circuit diagram of the proposed three-port DC-Dc converter is shown in Figure 3.1, which 

is coupled to two different power supplies, Port1 and port2, Port one is contacted to the PV panel, 

and port two is connected to the  Battery bank, and there is a third port which is connected to the 

load or the grid. 

The switches S1 and S2 plus the capacitor C1 are connected in parallel with the PV panel 

representing the main components of Port1 (the PV panel port), The resonant circuit L2C2 is 

connected in parallel with the Battery bank plus switch S3 representing port2, in this port the 

batteries are modeled to be an ideal with internal resistant rb. Vb is the voltage across the battery 

terminals, and the Vo is the port open circuit volt, as illustrated in Figure 3.2(a).  



25 

 

Ls
ip

+

– TX

Ns

NpLm

+

–

vp vdc

Figure 3.2(b) Transformer equivalent circuit
 

vT

Figure 3.2(a) Battery equivalent circuit
 

br

voBAT
+

–

Cb

ib

 

Figure 3.2 The equivalent circuit for the battery and the transformer. 

Those two ports are the input ports, and they are connected to the low-voltage-side (LVS) of 

the high-frequency transformer, whose turn ratio is described as n = Np / Ns, where Np and Ns 

indicate the primary and secondary winding turns, respectively. According to the definition of 

transformer ratio Np/Ns, the transformer is represented as a magnetic inductor Lm connected in 

series with an ideal transformer and parallel with a leak inductor Ls as illustrated in Figure 3.2(b), 

the transformer equivalent circuit. And the power Diodes D1, D2, D3 and D4 which work as Full-

Wave Rectifier connected to Cdc in parallel are the load port’s main components.  

3.2 Operational principle 

 

Figure 3.3 The proposed converter operation stages 
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 Figure 3.3 illustrates the gate signals (PWM) of the three switches as well as the voltage Vp 

throughout the primary side of the transformer. 

When the switch is turned on, Sn
* equals one otherwise, Sn

* equals 0, the PWM of the first two 

switches S1 and S2, are switching in a complementary manner with duty cycles 0.5,   S1 and S2 

complementary duty cycles can be altered from 0 to 1. S3 also has a duty cycle of 0.5. 

  The proposed TPC consists of four operating stages, I, II, III and IV, based on the statuses of 

the three switches and the duty cycle (d) values.  

Due to the similarity of analytic methodologies in different operating stages, this study analyzes 

just one operation stage, namely d1 > 0.5, d2 < 0.5, and 0.5< δ < d1, where d1 and d2 are the duty 

cycles of S1 and S2, respectively.  

 As I mention, the duty cycles of the S1 and S3 are 0.5, and the PWM of these two switches is 

complimentary. The complementary duty cycle of S1 and S2 can be changed from 0 to 1. The phase 

difference of the duty cycles of S1 and S3 is defined as absolute δ. 

The four stages and their equation describing as follow: 
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Stage I: 

             In this stage, S1 and S3 are activated while S2 is deactivated, a positive voltage is applied 

to the primary side of the transformer, VP = v1, and the PV energy is sent straight to the load side. 

This stage will continue to run until switch S1 is off. The initial current on the primary side of the 

transformer iP (0) is equal to I2 ( ip(0) = I2), the transformer voltage VT > 0, and  Vds3 = 0. 

 The equivalent circuit is shown in Figure 3.4.  

 

Figure 3.4 The operation states of the proposed converter Stage I 

The differential equations of this stage may be represented as follows. 
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Where LS is the leakage inductance on the primary side of the transformers and will explain more 

about it and its calculation later in this chapter, and at the end of the stage:  
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Figure 3.5 The operation states of the proposed converter stage II 

This stage started when S1 turned off, and S2 turned on while there was no change in the status 

of S3, After S1 turned off, the PV voltage dropped v1 = 0 and Vds3 = 0, while VT > 0. 

 Figure 3.5 shows the equivalent sub circuit of the stage, then we can express the stage 

differential equations as follows.   

As follow  
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When ip drops to I2, the duration time 

 

 

2M
s

T

I I
d L

V T


  

                                                                            (3. 6) 

 

                                         
 2 2

2

bV
i I d T

L
     

                                                                     (3. 7) 



29 

 

At the end of this stage, S3 is turned off, achieving ZVS, the transformer voltage VT = 0, and 

primary current ip = I2. 

 
2

2

b
p

V
i i T

L
   

                                                          (3. 8) 
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Figure 3.6 The operation states of the proposed converter stage III 

 

  In this stage, S3 is turned off while the rest of the switches stay the same as that in Stage II S1 

is off and S2 on, and the initial voltage across the S3 is Vds3(0) = 0. Figure 3.6 shows the equivalent 

sub circuit of the stage and the stage differential equations can be expressed as follows  
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Vds3 (0) = VT, Ids3 (0) is (9) 
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When Vds3 = VT, there is resonance with small magnitude and low frequency 
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The oscillation magnitude is small such that the current/voltage stage can be treated as a 

constant value, at the end of the stage: 

                               
 3 2 1 3cos 1ds s b sv V T d T             

                                                (3. 17) 

Stage IV:  

S1 is on and S3 is off, this is charging mode when the solar system is capable of supplying the 

load independently and, in the meantime, charging the storage system. 

 

Figure 3.7 The operation states of the proposed converter Stage IV 
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Lm >> L2,  
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dvds3 (0) = Ip – I2,  
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The peak value of Vds3 is:  
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Then the ZVS condition is  
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3.3 Design Considerations 

3.3.1 ZVS analysis  

The Phrases "hard switching" and "soft switching" relate to switching techniques that are 

dependent on the current-voltage relationship during the IGBT's on- and off-states. 

Figure 3.8 (a) illustrates a typical hard-switching current, voltage waveforms, and operating 

zone. Voltage and current are applied to the device during on-off transitions. When collector 

current and collector-emitter voltage are switched forcefully, collector current and collector-

emitter voltage change sharply, resulting in switching disturbance and losses. Hard switching is 

utilized in applications such as simple switches, motor drive inverters, and switched-mode power 

supplies. In comparison, soft switching uses an LC resonant circuit to turn a device on and off at 

zero current or voltage (ZVS or ZIS). Alternatively, the voltage and current switching timings are 

regulated so that the intersection of their waveforms is minimized.  

                      

                                       Figure 3.8 (a-b) shows hard and soft switching. 

The current and voltage waveforms of a soft-switched device and its operational zone are shown 

in Figure 3.8(b). Because switching devices turn on and off at zero or virtually zero voltage or 

current, soft switching helps eliminate or reduce switching disturbance and losses. Soft switching 

is commonly in the power electronic devices such as Converters or inverters that because soft 
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switching offers more advantages in terms of protecting the sensitive small components. Also, in 

this converter and in the solar array system, batteries are essential, so charging and discharging the 

batteries are important and have a significant impact on the system’s performance.  The charge 

mode influences battery performance and efficiency, which is why the ZVS technique is essential.  

3.3.2 Delta Calculation 
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Zs = 2π·f·Ls. (f is the switching freq., T = 1/f), Ls = 4 uH if A transformer is used, P3 is the power 

at the secondary side. 
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L2 = 470uH, Cs = 4 nF 

The ZVS range of S3 is δ3c, m ≤ δ ≤ δ3c,M, therefore, for (1), d1 should be set less than 0.6, the 

smaller the better, for example, d1 = 0.42, the value of δ is set the middle value of δ3c,m and  δ3c,m 

around 0.2. 

 



35 

 

3.3.3 Maximum Power Point Tracking of PV System 

In a PV system, the load characteristics changes to provide the maximum power from the 

system; this optimal load characteristic is known as the maximum power point. Maximum power 

point tracking is referred to the algorithm which is used in the controller to draw the maximum 

power available from PV under certain conditions. The PV cell has a nonlinear power curve due 

to the non-linear relationship between temperature and total resistance, the best way to analyze the 

PV cell power is the current voltage relationship where the maximum voltage is the open circuit 

voltage, and the maximum current is the short circuit current. The voltage at which the PV module 

can produce the maximum power is called maximum power point (or peak power voltage). Solar 

radiation, ambient temperature, solar cell temperature, as well as the age of the cell are some 

common conditions that affect the maximum power of the solar cell. Figure 3.9 below shows the 

current voltage curve for maximum power point tracking, where at the maximum power point, the 

voltage is Vmp and the current is Imp, Isc is the short circuit current and Voc is the open circuit 

voltage. 

 

Figure 3.9 MPPT Controller tracking the power curve of the solar 
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There are a varieties of algorithms that can be used for maximum power point tracking, I have 

used a straightforward algorithm which will track the first maximum power point only. The flow 

chart below shows the algorithm, wherein the primary state, we consider the current I(K) and the 

voltage V(K)of that instant, and by multiplying the two values, we get the first power primary 

P(K). For the next instant, we take the voltage and current for that instant and get the power by the 

same process.  

Now the second power, which is the current instant is our P(K) value, and the power we have 

calculated at the first time is our previous value denoted as P(K-1).  

 

Figure 3.10 MPPT flow chart 
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Then the algorithm examines if the current power is higher than the previous power by 

subtracting the previous one from the current value, which is denoted by dP, if the result of the 

subtraction is dP greater than 0, that means the current power is greater than the previous state of 

power. 

Following that, we check whether the current voltage is higher or lower than the previous state 

voltage since we can control the voltage by controlling the duty cycle. If the current voltage is 

higher than the previous stage voltage, we decrease the duty cycle d, if it is lower than the previous 

stage, we increase the duty cycle d. If dP is not greater than 0, then we follow the opposite path, 

as shown above in Figure 3.10. 

 

 

 

 



38 

 

Chapter 4 Simulation and Experimental Validations 

4.1 Simulation     

The presented model is simulated in MATLAB/Simulink using an inbuilt solar panel from 

Advance Solar Hydro Wind Power API 150. Table 4.1 specifies the values of the parameters used 

and the solar panel. A 30V, 12Ah lead acid battery is under consideration. The MIC's switching 

frequency has been set to 20 kHz. The model is simulated under various conditions and modes, as 

explained in the previous chapters, operation principle and the stages section. 

 

Figure 4.1 The built simulation circuit of the TPC 

The simulation follows the duty cycle for the switching for S3, which is charging and 

discharging the battery in two different working modes. Here the blue signal is the voltage across 

the S3, and the yellow signal represents the current across the switch. Also, the yellow signal 

shows the switching, and the objective is getting the zero-voltage switching.  



39 

 

From the figure 4.2 below we can see that our simulation is almost reached close to the zero-

voltage switching which will help us to achieve zero loss during the transformation. This data is 

validated and will be shown in the Laboratory setup and validation. 

 

Figure 4.2 illuminates the simulation ZVS. 

 

Figure 4.3 Simulation waveforms. 
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Figure 4.4 Demonstration of the ZVS at switch3  

4.2 Laboratory Setup  

 

Figure 4.5 Experimental system setup 

A 500W prototype is realized in hardware to validate the proposal converter, all real-time 

control algorithms have been implemented in an eZdsp F28335 control board, and then we 

generated the pulse generation module of the MOSFETs all the pulses are at 50% duty cycle, the 

converter parameters are given in Table 4.2. The battery port has three 12V, 12Ah lead acid 

batteries connected in parallel with switch two. Port one uses a BK PVS60085MR PV simulator 
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with a magnitude of 30V, to emulate a renewable energy source (V1). Port three is connected to 

resistive load as shown in Figure 4.5 above, the converter operates in a closed loop with output 

voltage regulated around 65V.  

Table 4.2 the proposed converter parameters 

Converter Parameters  Value 

    L2  470 uH  

    Ls   6.4 uH 

    C1, C2  330 uF 

    Cs3  2.2 nF 

    Cdc  330 uF 

                               

4.3 Transformer Design and Calculation of Leakage Inductance 

The planar transformer continues to develop as an alternative to wire-wound transformers. A 

wire-wound transformer has each winding wound on a separate soft iron limb or core. A planar 

transformer is simply a transformer that creates the coils out of flat windings, typically on a PCB 

board. It makes it perfect in some applications for improved efficiency and performance as well as 

compactness. The PCB construction produces a distinct form factor that not only saves time, 

money, and space but also perfectly satisfies individual requirements. There are four types of 

“transformer construction” and designs available with the different order of the PCB board, shown 

as Figure 4.6 Case-a is a fully interleaved winding configuration; case-b and case-c are partially 

interleaved winding non-interleaved winding configurations are used in case d setups. 
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Figure 4.6 Different configurations of Transformer winding. 

The primary and secondary sides of each of these planar transformers are wound with six turns 

each with two winding portions and fourteen turns each with four winding portions. That results 

in a theoretical turn ratio of 4.67 for each transformer. 

A transformer's leakage inductance, an inductive component, is created when two windings are 

not perfectly magnetically connected. 100% of the energy is magnetically linked from the primary 

to the secondary windings in a perfect transformer. The signal created in the secondary windings 

is lessened by imperfect coupling. Any magnetic flux acting in series with the primary winding 

but not connecting it to the secondary winding is regarded as inductive impedance.  

As a result, this "leakage inductance" is depicted on a schematic diagram as an extra inductance 

placed before the primary of an ideal transformer that is shown in the proposed TPC topology. 

 Leakage inductance should be low enough when it is undesirable in a wound component in 

some applications. Still, it must make up a more significant fraction of the total inductance to 

provide the energy storage medium required to ensure proper circuit performance. The 

transformer's leakage inductance value must be understood to be within predetermined bounds. 
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 In some transformer designs, adding an air gap to the core or utilizing non-interleaved windings 

are typically used to produce a higher amount of leakage inductance [35]. The waveform of the 

transformer’s primary voltage and current displayed in Figure 4.7 can be used to compute the 

leakage inductance value. The following differential equation can be derived for the transformer: 

ቊ v୮ = Ls1
ୢ୧౦

ୢ୲
 + v୘

n. v୘ = vs
                              Thus 

Ls1 =
v୮ଵି vୱଵ/୬

di/dt
  

 

Figure 4.7 Inductance leakage waveform calculation [33]. 

                           

leakage Inductance for type A Lc_a 1.63 uH 

leakage Inductance for type B Lc_b 2.3 uH 

leakage Inductance for type C Lc_c 4.3 uH 

leakage Inductance for type D Lc_d 6.4 uH 
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The above table shows the leakage inductances and parameters for these four types of 

transformer construction in the lab. Case-A non-interleaved winding configurations were used in 

the experiment.  The initial core permeability is 2300 and the core material is Ferrite Cores 98 with 

a turn ratio of 56:12. 

4.4 Experiment Results 

To validate the theory of the ZVS analysis, the prototype circuit powered up. Java signal code 

was built in MATLAB and then compiled and loaded into eZdsp F28335 control to generate PWM 

in the circuit. Output waveforms are recorded when the converter works in the three modes 

mentioned in chapter 2 from the primary/secondary side of the transformer, and the input/output 

voltage as well asue the ESS current all the result was consistent with the simulation result. 

When the PV produces more power than the load needs (PPv > PLd), then the extra energy will 

be used to charge the batteries (PPv–PLd) PB > 0, PPv = PB + PLd that calls the charging mode. 

Figure 4.8 shows the pulse width modulation (PWM) for S1 and S3, where the phase shift δ is 

0.5, and shows the transformer voltage and current of the primary side.  

The experiment results, as shown in Figure 4.9 and Figure 4.10, proved that the switches S1 and 

S3 can achieve ZVS at any value of δ, which is compatible with the calculation. 

Figure 4.11 shows the input voltage and current collected by the PV, the charging current and 

the converter's output voltage. 
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PWM1

PWM3

VT

IT

 

Figure 4.8 Measured waveform of VT & IT when the PV panel connects to the TPC 

 

Figure 4.9 Measured waveform of Vds1 & Vds3 when the PV panel connects to the TPC. 
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Figure 4.10 Measured waveform of S1& S3 working under ZVS when PV is the source & δ is 0.5. 

 

When the PV produces power less than the load needs (PPv < PLd), then the battery discharge 

power to compensate the power shortages in the circuit, which call discharging mode or the battery 

delivery mode PLd = PB + PPv.  

Figure 4.12 and Figure 4.13 show the pulse width modulation (PWM) for S1 and S3, where the 

phase shift δ is 0.23, and show the voltage of the two switches (Vs1 &- Vs3). And current. Figure 4.14 

shows the contribution of the two power sources (VPV, Ipv, Ib) and the Vdc output voltage. 
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Figure 4.11 Measured waveform of the VPv, IPv, Ib & Vdc when the load is connected. 

 

 

Figure 4.12 Measured the PWM of S1, S3, Vs1 & Vs3 in the deliver mode when δ is 0.23. 

PWM1 

PWM3

VdS1 

VdS3
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Figure 4.13 shows S1 and S3 ZVS when TPC is in the delivery mode. 

 

Figure 4.14 Measured waveform of the PV volt/current, battery current & output voltage. 
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When the PV is not producing any energy (PPv = 0) at night, for example, the battery will take 

over the load PLd =PB, Figure 4.15 shows the pulse width modulation (PWM) for S1 and S3, where 

the phase shift δ is 0.25, in addition to the voltage and the current of the transformer (VT, IT).  

It’s proven the theoretical concept of the ZVS in this mode for the converter. 

The theoretically critical ZVS condition of S3 is δ = 0.538, which agrees with the experiments 

in the range of the allowable error. As shown in the Figure 4.16 below, before the gate signals 

PWM1 and PWM3 are applied, vds1 and vds3 have already dropped to zero, which indicates S1 and 

S3 are turned ON under the ZVS condition. Thus, the ZVS theoretical calculation is verified by the 

experiments. 

 

 

 

    Figure 4.15 Measured waveform of the transformer voltage and current in SISO mode. 
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Figure 4.16 Measured waveform of the input/output voltage of the SISO mode. 

 

 

Figure 4.17 shows the PV simulator parameters. 
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Chapter 5  Conclusion, Recommendation for future work 

5.1 Conclusion 

Solar panels are examples of renewable energy sources that are being employed in stand-alone 

applications in the home, business, and automotive. Multi-port dc-dc converters are required to 

connect the sources and the load in these applications, together with energy storage. 

This thesis presents three port Dc-Dc converter designed to power managing solar panel sources 

with battery and DC micro-grid system. There are some advantages to this proposed converter, 

and more goals were achieved during the research phase. 

- Design that is inexpensive and effective, by using a smaller number of switches while 

maintaining the ZVS performance to minimize the power losses in the system. 

- Maximum power point tracking of the solar achieved, the converter working with high 

efficiency by using MPPT that, also demonstrated in the simulation and the validation. 

- Operation modes, the converter is capable of working in different operating modes, and 

regardless of RES availability or load demand, the converter is capable of controlling 

energy flow in the system. 

- The proposed converter has verified that it works efficiently in all the different modes  

All the above results have been simulated using MATLAB Simulink and validated using the 

experiment prototype, the result shows that the simulation and the experimental values are a 90% 

match. 
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5.2 Recommendations for Future Work  

Although the proposed converter may set the trend for multiport converters, several issues 

remain unresolved, motivating future improvements and research into existing controllers and 

integrated systems. Several potential improvements remain to research which are listed below.   

- Study the transient response, dynamic response and the steady state response of the 

converter and observe the effect on the efficiency and sustainability of the converter output 

as well as the soft-switching technique.  

- Built controller to the converter and integrated it to multiport converters, suggesting that 

Sooner, multiport converters will be widely used in homes and buildings, making each 

house, or building a small micro-grid. It is important to study and comprehend how to 

connect them to the grid and unify and regulate the group operation management. 

- Integrate micro-grids that can utilize several sources and are capable of supplying a single 

household as well as a small community and adding a rechargeable battery will allow 

providing power continuously during day and night. 
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Appendix(A) 

ZVS Analysis Code:  
clear all; close all; clc; 
Param_TPC; d3 = 0.5; Cs = 2.68e-6; 
V1 = 55; Vdc = 180; VT = Vdc/n; d1 = Vb/V1; 
%% ZVS of S3 
P3 = 50; delta = 0.1:0.01:0.4; 
VT = V1 - Zs*P3./(pi*delta.^2*V1); 
Vds3 = Vb - sqrt( (VT - Vb).^2 + (Vb*delta*T).^2  ); 
 
alpha = atan( (VT - Vb)./(Vb*T*delta) ); 
delta3m = sqrt( Zs*P3./(pi*(1 - 2*d1)))/V1; 
delta3M = d1 - (3*pi/2 - alpha)./(wr2 * T);              % S3 
Idx = find( (delta >= delta3m) & (delta <= delta3M) ); 
 
% plot(delta,Vds3,'b-'); return; 
 
%% ZVS of S3 -- 3D 
[P3,delta] = meshgrid([20:2:100],[0.05:0.005:0.25]); 
VT = V1 - Zs*P3./(pi*delta.^2*V1);  
Vds3 = Vb - sqrt( (VT - Vb).^2 + (Vb*delta*T).^2  ); 
 
[c,h] = contour(delta,P3,Vds3,[-5:5:20]);  
clabel(c,h,'FontSize',14,'LineWidth',1.5);grid on;  
set(gca,'Fontsize',15);return; 
 
% hold on; 
contourf(delta,P3,-Vds3,[0 0],'ShowText','on') 
hold on; contourf(delta,P3,Vds3,[-5:5:20],'ShowText','on') 
xlabel('\delta');ylabel('P_3 (W)'); set(gca,'Fontsize',15); 
 
return; 
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Appendix(B) 
ZVS DC parameters Code: 
clear all; 
Ts = 0.1e-7; 
Pn = 120; 
T = 10e-6; 
tstart = 0.01; 
f = 1/T; 
n = 50/8; 
V1n = 36;  
V2n = V1n*n; 
R = 300; 
Lmg = 85e-6;        % transformer magnetic inductance 
Rbase = V1n^2/Pn; Lbase = Rbase/(2*pi*f); 
Lm = Lmg/Lbase; 
Rm = 1000/Rbase; 
Lm = 500; Rm = 500; 
% return; 
%% PV 
Tref = 298; k = 1.38e-23; q = 1.6e-19; 
A = 1.2; Eg = 1.11; Vd = 0.55;            % single cell volt 
rs = 5e-4; 
VT = k*Tref*A/q; 
Ks = 0.072;Np = 1;                        % Is(T) = Isr*exp(Ks*(T-Tref)); 
K1 = 3e-3;                                % 3mA/degree 
Voc1 = 41.6; Isc1 = 5.3;                  % BP-175W 
% Voc2 = 22; Isc2 = 6.3;                    % SW-110W 
% Voc1 = 22; Isc1 = 6.3;                    % SW-110W 
Isr1 = Isc1/exp( Vd/VT  );                % saturate @ Tref  
Ns1 = floor(Voc1/Vd); 
% Isr2 = Isc2/exp( Vd/VT  );                % saturate @ Tref  
% Ns2 = floor(Voc2/Vd); 
Voc = 41.6; Isc = 5.3;                    % BP-175W 
% Voc = 41.6; Isc = 5.3;                    % BP-175W 
% lam = 0.7;temp = 298; 
% Pm1 = MPPT_Cal(Voc,Isc,lam,temp) 
return; 
lam = 0.7;temp = 298;  
PV2 = MPPT_Cal(Voc1,Isc1,lam,temp); grid on; 
max(PV2) 
 
d3 = [0.2 0.3 0.4 0.45 0.5 0.525 0.55 0.6]'-0.03; 
Vo = [142 175 193 198 211 223 240 292]'; 
Vo1 = 2*n*V1n*d3; 
[Vo,Vo1] 
plot(d3,Vo,'bo-',d3,Vo1,'r.-') 

 



61 

 

Appendix (C) 

Experimental code (Java signal) 
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Appendix (D) 

ZVS DC Simulation Controller 
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