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Abstract 

This research is motivated by the need for actuators capable of delivering precise multiple 
degrees of freedom (DOF) motion with structure and energy efficiency in numerous 
applications. Permanent magnet spherical motors (PMSMs) are typical examples that can 
provide continuous and precise 3 dimensional (3D) rotational motion about a ball joint. 
The result of this research demonstrates a unique PMSM capable of 3D rotational motion 
control with high accuracy and bandwidth. 

A Kalman filter (KF) sensor fusion method is developed to implement full state estimation 
of 3-DOF angular displacement and velocity in real time for a PMSM by simultaneously 
measuring the existing magnetic flux density (MFD) field and the back-electromotive-
force (EMF) as inputs to the sensor fusion algorithm. More specifically, the bijective 
property between the orientation and measured MFD field is numerically demonstrated, 
which provides the basis to implement the measurement model through an artificial neural 
network (ANN) trained with a Levenberg-Marquardt algorithm. A mathematical model 
presenting the angular velocity and back-EMF measurements is formulated in quaternion 
representation, simplifying the computations required to implement the sensor fusion 
system while providing a reliable and accurate estimation of both the orientation and its 
angular velocity. The rotor dynamics are modeled and represented with time-varying 
nonlinear differential equations. The system uncertainties due to parameter inaccuracies of 
the cascaded system and the changes of the loads are analyzed. A sliding mode control 
(SMC) system is developed to precisely and robustly control the typical nonlinear system 
of the PMSM regardless of the system uncertainties. The capabilities of chatter suppression 
and error convergence of the proposed control law are investigated. A PMSM prototype 
fabricated using additive manufacturing is developed to experimentally demonstrate the 
facilitation of the motor design and effectiveness/accuracy of the entire 3D orientation 
feedback control system. 
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Chapter 1: Introduction and Background 

1.1 Background 

Modern advancements in robotics, manufacturing, and bio-medical engineering 

have provided a need for more sophisticated actuators. Wrist-like joints in robotic 

manipulators are often accomplished by grouping multiple 1 degree of freedom (DOF) 

motors into a single assembly. The result of which mimics 3-DOF rotation but is 

mechanically complex and cumbersome due to the multiple joints required and lacks 

swift dexterous motion required in modern applications.  Spherical motors are researched 

as a solution to this problem, providing a method of 3-DOF rotation about a single joint. 

The permanent magnet spherical motor (PMSM) is a novel type of multi-DOF 

actuator that has been widely researched. The general structure of a PMSM is that of a 

spherical rotor that rotates about a ball joint bearing. The rotor contains multiple 

permanent magnets (PMs) that interacts with an array of electrical magnet (EM) pairs 

embedded within the motor’s stator. Manipulation of the rotor orientation is achieved by 

sending current to the EMs, inducing a magnetic torque between the EMs and PMs. As a 

unique current signal can be sent to each pair of EMs, the direction and magnitude of the 

provided torque can be altered.  To better illustrate this, Figure 1 depicts the basic 

structure of a PMSM. 
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Fig. 1. CAD Model of PMSM Structure [1] 

 

This research offers a unique PMSM design that solves the problem of non-

uniqueness in magnetic field-based readings. A sensor fusion approach is also 

implemented for combining MFD (magnetic flux density) and back-EMF orientation 

readings using a Kalman Filter for improved state estimation. A sliding mode controller 

is then implemented for its ability to control nonlinear systems in presence of 

uncertainties. The finished product demonstrates capabilities of regulation and tracking 

control of the rotor’s orientation with accurate sensing, which the research can then be 

applied to various applications requiring dexterous wrist-like motion. 
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1.2 Previous and Recent Related Works 

This section details existing research organized into the following segments: an 

introduction into the different types of researched spherical motors, methods of real-time 

rotor orientation estimation, and finally electromagnetic system modeling and control 

strategies. A summary of the existing research is presented at the end of this section, 

highlighting key issues that this research aims to investigate. 

1.2.1 Spherical Motor Conception and Structures 

 Research on spherical motors began with the spherical induction motor, designed, 

and developed by Laithwaite et al. [2-4] in the late 1950s and early 1960s. Other methods 

of obtaining 3-DOF spherical actuation have been developed, including variable 

reluctance (VR) [5-7], stepper [8, 9], direct current [10, 11], and ultrasonic [12, 13] 

spherical motors.  

Of the different types of spherical motors, most operate on the principle of 

electromagnetism. The spherical induction motors are similar to single-DOF induction 

motors, in which dynamic current signals are sent through three-phase windings of the 

stator, whose magnetic field induces an EMF in the rotor.  The EMF of the rotor also 

generates a magnetic field which generates a torque when interacting with the magnetic 

field of the stator. Although research has proven the validity of these motors, the design 

is inherently complex due to the multi-DOF three phase winding configurations and 

laminations are necessary to prevent unwanted eddy currents, encouraging research into 

more practical designs. 
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1.2.2 Realtime Rotor Orientation Sensing 

Orientation sensing is a crucial element in controlling a PMSM. A variety of 

different methods have been researched to describe the orientation of a PMSM. In [5, 6, 

9], an encoder system is designed to track the angle of an output shaft attached to a rotor. 

The result of which provides a method of tracking rotor orientation with high 

determinism, but its large size can be detrimental in modern applications that require 

space efficient joints. 

 This requirement encourages sensor less or contact-free sensing methods.  In [14-

16], vision/optical systems have been implemented as a means of contact-free sensing.  

These systems look for patterns on the surface of the rotor to determine their orientation.  

Vision systems are often computational intense and require the surface of rotor to be 

manufactured with a specific pattern required for the vision system to detect orientation. 

The magnetic fields produced by PMSM systems have been utilized for 

contactless sensing. In [17-19], an array of MFD sensors are used to measure the existing 

PMSM’s magnetic field and use an artificial neural network (ANN) to map the 

relationships between MFD sensor readings to the rotor’s orientation. Symmetry in a 

PMSM’s design results in the absence of the bijective property between measured MFD 

and rotor orientation.  This means that there are multiple possible orientations that result 

in the same magnetic field, also known as the “magnetic inverse” problem.  In [18], this 

problem is solved by splitting the rotors orientation into multiple connected bijective 

domains and developing a method to identify which domain the rotor is currently in but 

increases the complexity of the system. 
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The motion of the PMs embedded within the rotor results in a changing magnetic 

flux within the EMs that then induces a back-EMF. In [20-22], the back-EMF measured 

in the coils of the EMs are measured as a means of sensor-free orientation methods, 

which produces an expression for the rotor’s angular velocity. This result can then be 

integrated to approximate the rotor orientation but is only accurate with a well-defined 

model and is still subject to sensor drift, similar to an inertial measurement unit (IMU). 

1.2.3 Modeling and Control 

 Spherical motors are highly nonlinear systems, making them difficult to both 

model and control. In particular, determining the force/torque generated from the 

interaction between PMs and EMs is computationally intensive.  The Lorentz force 

equation and the Maxwell stress tensor are commonly used methods to describe the 

attractive and repulsive forces between magnets [6, 23, 24]. In [25], a dipole model is 

used to obtain a closed form solution for calculating magnetic field values of PMs and 

EMs. [1] expands on this and characterizes EMs as equivalent PMs and uses the dipole 

model for a closed-form solution of the torque model between PM and EMs in real-time.   

 Given the complexity of the PMSM model, non-linear control schemes are often 

utilized to achieve regulation and tracking control. Modeled and unmodeled uncertainties 

along with disturbances have a significant impact on a controller’s performance, 

requiring that the controller needs to also be robust. In [26], a neural network is trained to 

compensate for uncertainties in a PMSM model in combination with a fuzzy logic 

controller to achieve effective continuous trajectory control. In [18], a relationship 

between orientation and corresponding field values are used to create a magnet field-
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based PD controller to determine the desired torque, followed by a nonlinear inverse 

torque model to determine the appropriate control signal to send to the EMs. A terminal 

sliding mode control is applied to a PMSM on a sliding motion stage in [27] for feed-

forward compensation of modeling uncertainties resulting in an average tracking error of 

less than 0.07°. 

1.3 Thesis Outline 

The remainder of this thesis is organized into the following chapters. Chapter 2 

introduces the basic design of the PMSM created for this research and details the sensing 

methods used for real time orientation estimation. This includes an ANN model that 

estimates orientation from MFD measurements, rotor angular velocity from EM back-

EMF measurements, and sensor fusion using Kalman Filter for improved state 

estimation. Chapter 3 explains the nonlinear control of the PMSM, for which a SMC 

(sliding mode control) algorithm is derived considering the dynamic system model. 

Chapter 4 presents experimental results demonstrating the sensing and control system 

capabilities. Chapter 5 provides a conclusion to the results of the research, as well as 

comments on future work as a continuation of this research. 
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Chapter 2: Sensor Fusion Based Real-Time 3 DOFs 

Orientation Motion Estimation 

2.1 Overall Sensing System Design 

Figure 2 illustrates a 3-DOF PMSM (a-c) with a weight compensating regulator 

(WCR) along with block diagram representations of the proposed control (d) and sensing 

(e) scheme. The motor’s stator is a ball-like shape housing 𝑁ா EMs embedded on its 

outer surface. The rotor is a spherical shell containing 𝑁௉ spherically aligned cylindrical 

PMs and is supported by a spherical roller bearing mounted at the center of the stator. 

The WCR is made up of an upper and lower ring of 𝑁ௐ evenly spaced cylindrical PMs 

which are separately attached to the rotor and stator. The direction of the poles of the 

PMs in each ring are opposite to support the weight of rotor through magnetic repulsion.  

In between the rings of the WCR, is a circular ring of 𝑁ௌ evenly spaced single-axis Hall 

effect sensors embedded in the stator that measure the vertical component of MFD at 

each sensor’s respective location.  
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Fig. 2. 3-DOF spherical actuator system. (a) PMSM, (b) Back-EMF measurements, (c) WCR with MFD 

sensors, (d) Block diagram of PMSM system, (e) Flowchart of orientation sensing system. 

The reference 𝑋𝑌𝑍 coordinate system of the stator and the moving 𝑥𝑦𝑧 coordinate 

system of the rotor share a common origin defined at the center of the spherical roller 
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bearing which the rotor is free to rotate about. The rotor orientation can be described 

using an equivalent angle-axis 𝜽 = [𝜃௫ 𝜃௬ 𝜃௭] with spin angle 𝜃(= |𝜽|).  The WCR 

coordinate systems are defined as 𝑋ௌ𝑌ௌ𝑍ௌ and 𝑥௥𝑦௥𝑧௥ corresponding to the stator and 

rotor WCR PM rings, respectively.  The stator-𝑋𝑌 plane and rotor-𝑥𝑦 plane is parallel to 

the 𝑋ௌ𝑌ௌ and 𝑥௥𝑦௥ planes respectively, where the 𝑋ௌ and 𝑥௥ axes are pointing in the 

direction of 𝑆ଵ and 𝑃𝑀ଵ, and the 𝑍ௌ and 𝑧௥ align with the 𝑍 and 𝑧 axes, respectively.  

2.2 3 DOFs Orientation Estimation Based on Sensor Fusion 

 Information regarding the orientation of the rotor can be predicted using two 

separate measurements: the back-EMF induced in the EMs by the moving PMs and the 

MFD produced from the WCR measured by the Hall effect sensors. As each method can 

estimate orientation individually, a Kalman Filter can be implemented to fuse the two 

measurements together to increase the accuracy of the orientation estimation.  

2.2.1 Orientation Sensing MFD Measurements 

The WCR consists of a ring of PMs located on the rotor and the stator that repel 

each other. The WCR ring of the stator is made up of 𝑁ௐ cylindrical PMs that are 

assumed to be identical in geometry and magnetization, where the ring of the rotor also 

has 𝑁ௐ cylindrical PMs but each with unique magnetic strengths. Located between the 

pair of PM-rings, is a ring of  𝑁ௌ (≠ 𝑁ௐ) evenly spaced single-axis MFD sensors. Each 

MFD sensor is oriented to detect the Z-component of [𝑩ௌ] at the respective sensor 

location, where the set of all MFD readings can be defined by the vector 𝑩 with length 

𝑁௦.  
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  Given that 𝑩 = 𝑩(𝜽) and a unique 𝑩 exists for the entire domain of 𝜽, an ANN 

can be trained to map the sensor readings to a corresponding rotor orientation. If this 

uniqueness exists, it is said that the bijective property exists between 𝑩 and 𝜽. This is 

possible when each magnet in the rotor WCR ring is unique, as if the magnets were 

identical, the value of 𝑩(𝜃) given a rotor inclination 𝒆𝒛 would be identical to 𝑩(𝜃 +

2𝜋 ⋅ 𝑖 𝑁ௐ⁄ ) where 𝑖 can be any integer as the magnets are evenly distributed. When the 

magnets have unique strengths, it acts as a signature that the set of MFD sensors can 

detect. Given that a unique 𝑩 exist for any possible rotor orientation, an ANN can be 

used to output orientation given the MFD readings as an input. 

To guarantee that the bijective property between 𝜃 and 𝑩(𝜃) exists, the 

measurement vectors B at any two different spin angles, 𝜃ଵ and 𝜃ଶ(≠ 𝜃ଵ) are distinct. 

This can be expressed mathematically, shown in Equation (1). 

∀ 0 ≤ 𝜃ଵ,   𝜃ଶ < 2𝜋, 𝑩(𝜃ଵ) ≠ 𝑩(𝜃ଶ ≠ 𝜃ଵ) (1) 

Considering the 𝑚௧௛ sensor, Δ𝐵௠ = 𝐵௠(𝜃ଵ) − 𝐵௠(𝜃ଶ). Expanding on this expression 

using the Fourier series results in Equations (2a ,b) 

Δ𝐵௠ = ෍ 𝑎௠௞(cos 𝜙௠ଵ − cos 𝜙௠ଶ)

ஶ

௞ୀଵ

 
(2a) 

𝑤ℎ𝑒𝑟𝑒 ൤
𝜙௠ଵ

𝜙௠ଶ
൨ = 𝑘𝑛௪ ൤

𝜃ଵ + 2𝜋(𝑚 − 1) 𝑁௦⁄

𝜃ଶ + 2𝜋(𝑚 − 1) 𝑁௦⁄
൨ 

(2b) 

From this, it can be seen that 𝛥𝑩 = 𝟎 only when 𝜙௠ଵ + 𝜙௠ଶ = (2𝑙 + 1)𝜋 or 

𝜙௠ଶ = 𝜙௠ଵ + 2𝑙𝜋 (where l is an arbitrary integer) for all possible k and m. In other 

words, 𝛥𝑩 = 𝟎 only when Equation (3) shown below is satisfied. 
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𝜃ଵ + 𝜃ଶ =
(2𝑙 + 1)𝜋

𝑛௪𝑘
−

4(𝑚 − 1)𝜋

𝑁ௌ
 (3a) 

𝜃ଵ − 𝜃ଶ = 2𝜋
𝑙

𝑛௪𝑘
 (3b) 

Given 𝜃ଵ  and 𝜃ଶ in the range [0, 2π), it is impossible to find the values of 𝜃ଵ and 

𝜃ଶ to satisfy (5a) for all m =1, … NS. Meanwhile, since 0 < |𝜃ଵ − 𝜃ଶ| < 2𝜋, 0 <

|𝑙/(𝑛௪𝑘)| < 1 from (5b) which is valid only when nw  > 1 for all positive integer k. 

Thereby, the bijective property between θ and B(θ) exists when the WCR rotor PMs are 

distinct.  

The magnetic orientation sensing method is best illustrated numerically with the 

aid of Figure 3(a) shown in the following page where P is the intersection point between 

𝒆𝒛 and the plane Z = 1 in the XYZ coordinate system expressed in Equation (4).   

𝒆௭ =
𝑷

|𝑷|
, where 𝑷 = [𝑋௉ 𝑌௉ 1]் 

 

(4) 

 The magnetic fields of the WCR PMs are simulated using a commercial 

COMSOL finite element analysis (FEA) software. The values of the WCR and sensor 

parameters (defined in Figs. 2c and 3a) used in the FEA are summarized in Table 1. 

Operated in repulsion, all PMs are axially magnetized; the lower-ring PMs are assumed 

to be identical and 𝑁௦ (= 11 𝑜𝑟 𝑁௪ − 1) sensors are single-axis measuring the B = BZ 

component.  Figures 3(b) and 3(c, d) are typical results revealing the effects of the spin-

angle 𝜃 and inclination 𝒆𝒛 on the measured B by S1 and (S1, S4), respectively. Figure 3(b) 

simulates “sensor S1 measurements” as 𝜃 spins from 0° to 360 while the inclination 𝒆𝒛 is 

maintained at P = [-0.1 0.1 1] for two upper-ring designs; identical PMs (top) and non-
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uniform PM layout (bottom).  The effects of the upper-ring-PM designs on the simulated 

B can be analyzed by the two plots in Figure 3(b).  As shown in the upper plot that 

assumes identical upper-ring PMs, nw = NW.  Using a non-uniform PM layout (bottom 

plot), nw = 1 ensures that the bijective property between θ and B(θ) exists.   

 

Fig. 3. Schematics illustrating the bijective properties of the orientation sensing method. (a) Coordinates 

and parametric values used in FEA. (b) Comparison of simulated B at S1 when θ changes from 0° to 360° at 

P = [−0.1 0.1 1]: Identical PMs (top). Non-uniform layout (bottom). (c) MFD fields measured by Sensors 

S1 and S4. (d) Isolines (S1, S4, S7) for estimating the shaft inclination. 
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Table 1. COMSOL Simulation Parameters 

WCR (Nw = 12):  h1 = 51, h2 = 13, r1 = 47, r2 = 35. 

Lower-ring PM: Diameter do = 10, Length lp = 9.8, μ0M = 0.1732T 

Upper-ring PM: do = 20, lp = 2. 

Identical μ0M  Three different types of PMs: μ0M (Location index) 

µ0M(T) 0.244T (1,5,9,10), 0.229T (2,4,8,12), 0.203T (3,6,7,11) 

MFD sensors (Ns = 11): hs = 15, rs = 38, S1 and S4 are used  

 

Figure 3(c) simulates the “B fields measured by the two sensors (S1, S4)” over all possible 

locations of P on the Z=1 plane by tilting the shaft at a specified θ = 0°. The 

corresponding (S1, S4) isolines or the constant B contours are shown in the (left, middle) 

plots of Figure 3(d).  Similarly, the right plot of Figure 3(d) shows the isolines measured 

by S7.  The isolines are mostly arc-shaped and well-defined illustrating that three single-

axis sensors are sufficient to uniquely determine the unit-normal 𝒆𝒛 as revealed in Figure 

3(d) where three unique (S1, S4, S7) isolines intersect Z=1 plane at P (solid-red circle). 

2.2.2 Angular Velocity Sensing EM Back-EMF Measurements 

 The motion of the embedded PMs within the rotor will induce a voltage in the 

stator’s EM. The value of this voltage carries information relating to the angular velocity 

of the rotor. Considering one EM and PM pair, the moving magnetic field of the PM 

induces a back-EMF that can be expressed as time derivative of magnetic flux linkage 

Λ௣. This can be found by subtracting the voltage over the coil impedance from the 

measured voltage 𝐸 which current 𝑖 flows through with self-inductance 𝐿: 

𝑑Λ୮

𝑑𝑡
= 𝐸 − ൬𝑅௘𝑖 + 𝐿

𝑑𝑖

𝑑𝑡
൰   where   𝛬௣ = 𝑓(𝜑) (5a, b) 
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It is denoted above that the magnetic flux linkage between an EM and PM is a 

function of the separation angle 𝜑(= cosିଵ(𝒆𝒓 ⋅ 𝒆𝒔)) between the two and PM polarity 

𝜆(= 1, −1). Taking the time derivative of Equation (5b) and equating it to Equation (5a) 

results in Equation (6) shown below. 

𝐸 − ൬𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
൰ = 𝑓ᇱ(𝜑)𝜆 ⋅

𝒆̇𝒓 ⋅ 𝒆𝒔

ඥ1 − (𝒆𝒓 ⋅ 𝒆𝒔)𝟐
   where   𝑓ᇱ(𝜑) =

𝑑𝑓(𝜑)

𝑑𝜑
 (6a, b) 

Expanding (6a) to account for the contributions from all 𝑁ா EMs and 𝑁௉ PMs, the back-

EMF in the 𝑗௧௛ EM due to the angular velocity 𝝎 can be expressed using Equation (7).  

𝑮௝𝝎 = 𝐸௝ − ൬𝑳௝

𝑑𝑰𝒔

𝑑𝑡
+ 𝑅௝𝑖௝൰  where 𝑮௝ = ෍

−𝜆௜൫𝒆௥௜ × 𝒆௦௝൯
்

𝑓′(𝜑௜௝)

ට1 − ൫𝒆௥௜ ⋅ 𝒆௦௝൯
ଶ

ே೛

௜ୀଵ

 (7a, b) 

𝑳௝ = ൣ𝐿ଵ௝ … 𝐿௡௝ … 𝐿ேಶ௝൧ and  𝑰𝒔(𝑡) = ൣ𝑖ଵ(𝑡) … 𝑖௝(𝑡) … 𝑖ேಶ
(𝑡)൧

்
 (7c, d) 

Here, 𝝎 represents the angular velocity of the rotor from 𝒆̇𝒓 and 𝑮௝ is a row vector 

derived from (6a) considering the effects of all 𝑖 PMs on the 𝑗௧௛ EM.  𝑳௝ is the 𝑗𝑡ℎ EM 

inductance vector where 𝐿௡௝ is the EM’s self-inductance (𝑛 = 𝑗) and mutual inductances 

(𝑛 ≠ 𝑗) between the 𝑛௧௛ and 𝑗௧௛ EM. 

Considering each EM, a set of 𝑁ா linear equations can be expressed in matrix 

form shown in Equation (8a). Here, Y is a column vector corresponding to set of back-

EMF calculations shown in (8b). 

[𝑮]𝝎 = 𝒀 where 𝒀 = 𝑬 − ൬[𝑳]
𝑑𝑰௦

𝑑𝑡
+ 𝑅௘𝑰௦൰ (8a, b) 

[𝑮] = ൣ𝑮ଵ ⋯ 𝑮௝ ⋯ 𝑮ோ൧
்

 and [𝑳] = ൣ𝑳ଵ … 𝑳௝ … 𝑳ேಶ
൧

்
 (8c, d) 
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So long as 𝑁ா is 3 or greater, 𝝎 can be estimated by using the least square method shown 

in Equation (9). 

𝝎 = ([𝑮]்[𝑮])ିଵ[𝑮]்𝒀 (9) 

2.2.3 Sensor Fusion for Real-time Orientation Detection 

 The measurement outputs from the ANN and the EM back-EMF can be combined 

using a KF to improve orientation estimation accuracy while incorporating unmodeled 

factors.  The output of the ANN and the back-EMF can be expressed in quaternion form. 

𝒒 = 𝐴𝑁𝑁(𝑩) where  𝒒 = ൤cos ൬
𝜃

2
൰ 𝒆𝜽 sin ൬

𝜃

2
൰൨  and ‖𝒒‖ = 1 (10a, b, c) 

 The advantage of using quaternion representation compared to rotation matrices is 

that the number of computations required for 4-dimensional number operations is far less 

than that which is required for 3x3 matrix multiplications. 

  Expressing the rotor angular velocity in quaternion form, 𝝎𝒒 = [0 𝝎], the time 

derivative of 𝒒 can be solved using Equation (11a) and rewritten for discrete KF 

implementation [29] in Equation (11b), where ⨂ is the Hamilton product operation. 

𝒒̇ =
1

2
𝒒⨂𝝎௤  and 𝒒̇௞ =

1

2
𝒒ෝ௞ିଵ⨂𝝎𝒒𝒌  

(11a, b) 

The subscripts 𝑘 and 𝑘 − 1 in Equation (11b) refer to the discrete measurements at time 

𝑡 = 𝑘𝑇 and previous time step 𝑡 = (𝑘 − 1)𝑇. 

The discrete KF state space model can be expressed as follows, where the 

estimated state and control-input vectors are defined in Equation (12a, b), the KF state 

space model is shown (8c), and the KF output is expressed in (12d) [30].  
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𝒙ෝ௞ = ൣ𝒒ෝ௞  𝒒̇෡௕௞൧
்

;   𝒖௞ = 𝒒̇௞ (12a, b) 

𝒙௞ = ൤
[𝑰] −𝑇[𝑰]

𝟎 [𝑰]
൨ 𝒙௞ିଵ + ቂ

𝑇[𝑰]
𝟎

ቃ 𝒖௞ + 𝒘௞ 
(12c) 

𝒛௞ = [𝟏 𝟎]𝒙௞ + 𝒗௞ (12d) 

Here, 𝒘௞ and 𝒛௞ represent the process and measurement noise, respectively. The 

initial state and measurement error covariance matrices necessary to implement the KF 

algorithm can be estimated from experimental results and further tuned to improve the 

accuracy of the model. The KF sensing algorithm is illustrated in block diagram form in 

Figure 4. 

      
1T T

G G G Y

Y
 1ˆ / 2k k  qq ω

k ku q

B q

1ˆ kq
kqω

ˆ kx  1ˆ ˆ [ ]k k k x A x B u

1z

  s e sd dt R E L I I
E

sI

 

Fig. 4. Flowchart illustrating sensor fusion for orientation estimation. 
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Chapter 3: Real-Time 3 DOFs Orientation Motion Control 

Using Sliding Mode Method 

After the development of the orientation sensing system, a control algorithm can 

be implemented to drive the rotor to a desired state.  The current supplied to the array of 

EM pairs is the control signal, 𝒖, as the resulting magnetic field induces a torque that 

interacts with the magnetic field of the PMs.  Given the nonlinearity of the system, a 

SMC algorithm can be used to account for these nonlinearities as well as modeled and 

unmodeled uncertainties. 

3.1 Dynamic System Modeling 

Given the symmetry of the system, the rotor’s rotational mass 𝐽 can be expressed 

as a diagonal matrix. The sum of torques at the systems origin is expressed below in 

Equation (13). 

∑𝑻଴ = 𝑻௨ − 𝑻௥ =
𝑑𝑯଴

𝑑𝑡
=

𝜕𝑯଴

𝜕𝑡
+ 𝝎 × 𝑯଴ 

where 𝑻௥ = 𝑻௚ + 𝑻ௐ஼ோ  and 𝑻௨ = [𝑲𝑻]𝒖 

(13a, b, c) 

Equation (9a) expresses the net torque applied to the rotor in the stator coordinate system, 

which can be expressed as the time derivative of angular momentum, 𝑯଴(= 𝑱𝝎).  𝑻௨ is 

the control torque generated as a result of current, 𝒖, flowing through the EMs and 𝑻௥ is 

the restorative torque  𝑻௥, consisting of the torque created due to gravity, 𝑻௚, and the 

repulsive torque of the WCR, 𝑻ௐ஼ோ. Both terms in 𝑻௥ are orientation dependent, where 

𝑻௚ can be directly calculated given 𝜽 and 𝑻ௐ஼ோ can be calculated through simulation. 
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The control torque gain, [𝑲்], is a 3 × 𝑁ா matrix, whose elements are also orientation 

dependent, determines the direction and magnitude of torque generated from every EM at 

a given instance.  [𝑲்] can be calculated for a given orientation using the Lorentz Force 

Law (A.1). 

Substituting 𝑯଴ = [𝑱]𝝎 and Equation (13c) Equation (13a) results in the 

following expression.  

[𝑱]𝜽̈ + ൣ𝑠𝑘𝑒𝑤൫𝜽̇൯൧[𝑱]𝜽̇ + 𝑻௥ = [𝑲்]𝒖 (14) 

To account for the model uncertainty in developing the control algorithm for the non-

linear dynamics, the terms 𝑱, [𝑲்], and 𝑻𝒓 can be separated into nominal terms denoted 

by the subscript ‘0’ and an uncertain deviation Δ from the nominal term, which are 

expressed in (15a, b, c) 

[𝑱] = [𝑱଴] + [Δ𝑱], [𝑲்] = [𝑲்଴] + [Δ𝑲்], 𝑻௥ = 𝑻𝒓଴ + Δ𝑻௥    (15a, b, c) 

Distributing these expressions into (14) and separating nominal and uncertain terms into 

separate equations results in the system dynamics shown below in Equations (16a) with 

disturbance term in (16b).  

[𝑱଴]𝜽̈ + ൣ𝑠𝑘𝑒𝑤൫𝜽̇൯൧[𝑱଴]𝜽̇ + 𝑻௥଴ + 𝑫 = [𝑲்଴]𝒖 (16a) 

𝑫 = [Δ𝑱]𝜽̈ + ൣ𝑠𝑘𝑒𝑤൫𝜽̇൯൧[Δ𝑱]𝜽̇ + Δ𝑻௥ − [Δ𝑲்]𝒖 + 𝒅 (16b) 

Here, 𝑫 represents the total uncertainty where 𝒅 represents the unmodeled uncertainty. 

3.2 Real-Time 3 DOFs Orientation Motion Control 

To account for the number of modeled and unmodeled uncertainties, a SMC 

algorithm is proposed. SMC takes into consideration the nonlinearity of the system while 

also being robust. The 1st order sliding surface is defined in Equation (17). 
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𝒔 = ൬
𝑑

𝑑𝑡
+ [𝑷]൰

௞

𝒆  where 𝒆 = 𝜽ௗ − 𝜽 
(17a, b) 

𝑘 = 𝑟 − 1; and [𝑷] = 𝒅𝒊𝒂𝒈(𝑃ଵ 𝑃ଶ 𝑃ଷ) (17c, d) 

 Here, 𝑟 represents the order of the system which can be seen from the system 

dynamics in Equation (16a) to be equal to 2, and 𝑃௜ are positive constants. Substituting 

𝑘 = 1 into Equation (17a) results in the following sliding surface followed by its 

derivative. 

𝒔 = 𝒆̇ + [𝑷]𝒆 and 𝒔̇ = 𝜽̈𝒅 − 𝜽̈ + [𝑷]𝒆̇ (18a, b) 

Solving Equation (16a) for 𝜽̈ and substituting the results into Equation (17b) 

results into the following expression. 

𝒔̇ = 𝜽̈ௗ + [𝑷]𝒆̇ + [𝑱଴]ିଵ൫ൣ𝑠𝑘𝑒𝑤൫𝜽̇൯൧[𝑱଴]𝜽̇ + 𝑻௥଴ + 𝑫 − [𝑲்଴]𝒖൯ (19) 

By maintaining the sliding surface to 𝒔 = 𝟎, the error dynamics will converge to 0 

as (18a) becomes 𝒆̇ = −[𝑷]𝒆. When 𝒔 ≠ 𝟎, a control input should be applied that the 

sliding dynamics in (18) ensures that 𝑠𝑔𝑛(𝒔) = −𝑠𝑛𝑔(𝒔̇). The control effort can then be 

described as the combination of maintaining 𝒔 = 𝟎 and coercing 𝒔̇ when 𝒔 ≠ 𝟎. 

Therefore, we can express the total control effort as the following. 

𝒖 = 𝒖௘௤ + 𝒖௦௪ (20) 

Here, 𝒖௘௤ and 𝒖௦௪ are the equivalent and switching control, respectively. The 

former term provides the main control action assuming that 𝑫 = 𝟎 that maintains 𝒔̇ = 𝟎, 

where the latter term provides addition control effort for the uncertainties and 

disturbances while also adjusting the sliding dynamics when the system is not on the 

sliding surface, both of which are expressed in (21a) and (22b). 
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𝒖௘௤ = [𝑲்଴]ିଵ ቀ[𝑱଴]൫𝜽̈ௗ + [𝑷]𝒆̇൯ + 𝑠𝑘𝑒𝑤൫𝜽̇൯[𝑱଴]𝜽̇ + 𝑻௥଴(𝜽)ቁ (21a) 

𝒖௦௪ = [𝑲்଴]ିଵ[𝑱଴][𝒌]𝑠𝑔𝑛(𝒔) (21b) 

In (21b), [𝒌] represents a diagonal matrix whose diagonal components are 

positive constants.  The choosing of [𝒌] and [𝑷] can be tuned to enhance desired 

performance. 

The algorithm necessary to compute the control law can be better visualized in 

block diagram form, shown below in Figure 5. 

            1

T0 0 0 0eq d rskew
   u K J θ P e θ J θ T θ  

      1

T0 0 sgnsw

u K J k s

θ

θ

  1

T0( )


K θ 0rT θ

d e θ θ

dθ

dθ

d e θ θ 

 sgn( ) s e P e

eq sw u u u

 

Fig. 5. Control law algorithm depicted in block diagram form. 

To reduce the chatter introduced by the switching function in (21b), the sign 

function can be approximated as a hyperbolic tangent smoothing function with smoothing 

constant, Ω, expressed in Equation (22). 

𝑠𝑖𝑔𝑛(𝒔) ≈ tanh ቀ
𝒔

Ω
ቁ (22) 

 The utility of using the smoothing function is that the switching control effort 

decreases as 𝒔 approaches 𝟎, whereas without the smoothing function the switching 

control would be of constant magnitude unless 𝒔 is exactly 0. The smoothing constant, Ω, 

can be tuned to adjust the amount of smoothing, where the hyperbolic tangent function 

more similarly resembles the sign function as Ω approaches 0. 
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The system’s stability is analyzed using the Direct Lyapunov stability method, 

where the Lyapunov function is expressed in Equation (23) where 𝑉 = 0 when 𝒔 = 𝟎 and 

𝑉 > 0 when 𝒔 ≠ 𝟎. 

𝑉 = 𝒔்𝒔/2 (23) 

The error of the trajectory of sliding dynamics from the reaching phase to the 

sliding phase can converge under the following condition.  

𝑉̇ < 0 when 𝒔 ≠ 𝟎 where 

𝑉̇ = 𝒔்𝒔̇ = 𝒔் ቀ[𝑱𝟎]ି𝟏𝑫 − [𝒌]𝑠𝑔𝑛(𝒔)ቁ = ൤
𝐷ଵ

𝐽ଵ

𝐷ଶ

𝐽ଶ

𝐷ଷ

𝐽ଷ
൨ 𝒔 − [𝑘ଵ 𝑘ଶ 𝑘ଷ]|𝒔| 

< − ൤൬𝑘ଵ −
𝐷௠௔

𝐽ଵ
൰ ൬𝑘ଶ −

𝐷௠௔௫ଶ

𝐽ଶ
൰ ൬𝑘ଷ −

𝐷௠௔௫ଷ

𝐽ଷ
൰൨ |𝑠| 

(24) 

where [Dmax1 Dmax2 Dmax3]T = max(D). The stability condition in the previous expression 

will be satisfied when ki < Dmaxi/Ji.. 
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Chapter 4: Experimental Demonstration and Validation 

 The prototype system of the permanent magnetic spherical motor is validated 

through a series of experiments. First, the overall structure and components of the 

prototype system is introduced. A training module is developed to automize the data 

collection required for training the ANN model. The sensing system is then evaluated 

through comparison of ground truth orientation measurements to the orientation output of 

the real time sensing system. After validation of the PMSM’s sensing capabilities, the 

SMC is implemented in the prototype system, testing its regulation and tracking 

capabilities. The first section of this chapter details the experiments and corresponding 

results validating the sensing system, followed by a section experimentally validating the 

control system and the overall PMSM design. 

4.1 Experimental Setup 

The mechanical structures of the spherical motor with weight-compensation are 

3D-printed with PLA plastic filament based on the design presented in Figure 2. Figure 6 

shown on the next page depicts the experimental hardware used for the experiments in 

this chapter. Supported on a spherical roller bearing (SRJ012C), the rotor is capable of 

full (0°~360°) spin about the shaft that has an inclination range of ±12° tilt angle. An 

optical system consisting of two orthogonal laser-pointers and an inertial measurement 

unit (IMU with Model No. MPU6050) as shown in Figure 6(c) are placed on the top of 

the rotor to obtain data for the ANN training and prototype evaluation/demonstration 

purposes. The parameters of the weight compensation and magnetic sensing systems are 

listed in Table 2 whereas the parameters of rotor PMs and stator EMs of the spherical 
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motor are tabulated in Table 3. The stator EMs are custom-manufactured on a coil-

winding machine and fabricated with the same copper wire and the same number of 

turns. The resistances of all the EMs are measured within the range (11±0.13) Ω. 

 

Fig. 6. Experimental testbed. (a) Overview. (b) Prototype spherical motor. (c) Embedded sensors and 

sensing systems for verification. (d) Controller with IO modules and current amplifier boards. 

 

Table 2. Parameters used in the simulations (Dimension in mm). 

WCR (Nw = 12):  h1 = 51, h2 = 13, r1 = 47, r2 = 35. 

 

Lower-ring PM: Diameter do = 10, Length lp = 
9.8,   μ0M = 0.1732T 

Upper-ring PM: do = 20, lp = 2. 
Three different types of PMs: μ0M (Location 

index) 
0.244T (1,5,9,10), 0.229T (2,4,8,12), 0.203T 

(3,6,7,11) 
MFD sensors(Ns=11): hs = 15, rs = 38 
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Table 3. Spherical motor parameters (Dimension in mm). 

 

To implement the sensing and control algorithms in real time, a combination of 

FPGA and real-time processing is accomplished using National Instrument’s (NI) cRIO 

9035.  In addition, C series modules can be installed into the cRIO for signal 

measurement and signal output. Two NI 9205 voltage input modules can be used to 

collect the voltage of the 11 vertically aligned single axis MFD sensors (A1302) and the 

back-EMF of the 12 pairs of copper coils. The MFD sensors are supplied 5V by a 

Keithley 2231A power supply which then returns a voltage signal linearly proportional to 

the measured MFD. The NI 9264 voltage output module sends a voltage signal to an 

array of circuit boards that converts the voltage to an amplified current signal. The 

described embedded control system is shown in Figure (6d). It is found that the voltage to 

current relationship is not linear, so a simple integral controller is developed in LabVIEW 

to correct the voltage output signal to coerce measured current to a desired current. The 

measured current can be estimated by dividing the measured EMF by the coil’s 

Y or yX or x

R

fx 

Z or z

EM

ai 

ao
Dimension in mm
Angle in degrees

lˆMM z

ao

PM

fz 

          
Rotor PM: NP = 20, μ0M = 0.3464T, ao = 19.7, l = 3.9.  

xyz frame 
R = 55  

Index, ith  fx  fz  Polarity, λ 
1~10 70° 36° × (i−0.5)  (−1)i 
11~20 110° 36° × (i−10.5) (−1)i1 

Stator EM: NE = 24. Re = (11±0.13) Ω (800 turns, wire diameter = 0.32)  
   ao = 18.75, ai = 7.7, l = 12  

XYZ frame 
R = 44  

Index, jth fx  fz  
1 ~ 8 55° 45° × (i −0.5)  
9 ~ 16 90° 45° × (i−9) 
17~24 125° 45° × (i−16.5) 
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resistance, assuming that inductive effects are small. The data collection modules and 

algorithm implementation can all be conveniently programmed using LabVIEW. Figure 7 

shown below depicts the experimental setup in block diagram form. 

θ

ω

( )B θ

T11 1xu

 

Fig. 7. System dataflow depicted in block diagram form. 
 

In order to use the Kalman Filter sensing model, the ANN model needs to first be 

calibrated. This can be accomplished by collecting training data corresponding to the 

voltage array of the 11 MFD sensors for known orientations of the rotor.  A calibration 

module is designed to automatically move the rotor to known orientations and collect 

MFD sensor readings. An image of the calibration module is shown on the following 

page in Figure (8a), and a flow chart of the data collection procedure in Figure (8b). 
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Fig. 8. ANN Calibration Module. (a) Module Setup, (b) Illustration of Calibration Module. 

The calibration module operates as a spherical gantry system, consisting of a 

circular base track and two parallel half-circle top tracks. Each track has gear teeth on the 

outside surface and a double-v groove on its interior, allowing for the motor carriages to 

travel along them. Two motor carriages are attached on opposite ends of the base, and 

one is attached to the top tracks. The attachments are made by a pinion driven by a 

stepper motor meshed with the gears on the track and double-v wheels that roll along the 

groove of the interior of the tracks. These constraints force the carriages to move along 

the circular path of the tracks. The top track motor carriage has an additional idler pinion 

for the additional track, so that the carriage can sit evenly in between the two top tracks. 
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The top track has an additional stepper motor that directly connects to the stepper motor 

via shaft and shaft coupler. 

The structure of the calibration module allows the for the rotor to be moved to 

known orientations as the gear ratios and the angle of the stepper motors are both known. 

The rotation can be pictured as “ZYZ” Euler angles, where the base carriage stepper 

motors drive the top track about the stator Z axis, the geared top carriage stepper rotates 

the rotor about its Y’ axis, and the top carriage stepper directly connected to the rotor 

spins it about its Z’’ axis. 

A MATLAB program can be made to facilitate a calibration data collection 

routine, where the program sends commands to an Arduino Nano programmed to send 

the appropriate signals to the stepper motor drivers (TB 6600), and request MFD sensor 

voltage readings from an NI 9205 voltage input. Given that the gear ratios of the system 

are known, the inputs and outputs necessary to train the ANN for a given calibration 

range can be determined.   

4.2 Sensing Experiment Results and Analysis 

The accuracy and efficiency of the sensor fusion based on embedded magnetic 

sensing and back-EMF based measurements of the angular velocity are experimentally 

evaluated on the prototype testbed shown in Figures 6 (a, b).  

As shown in Figure 9(a), the two laser-pointers are placed orthogonally at (0, 0, 

R) described in the local xyz frame of the rotor (radius rp).  During initialization, the xyz 

frame is oriented to coincide with the stator XYZ frame.  To achieve a resolution in the 

order of 0.005, the two orthogonal laser beams are projected to two distance planes with 
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1cm2 grids (Figure 8a); Planes 1 and 2 placed at (𝑋ଵ=371cm, 𝑌ଵ=0) and (𝑋ଶ=0, 

𝑌ଶ=392cm), respectively.  

rp = 7.4cm
Plane 1 (X1=392cm)

Rotor

Laser pointers
and IMU

(a)

(b)

qB
Input

q
output

Hidden 1 Hidden 2 Output

3 or 11
20 nodes 20 nodes 4 nodes

4

Plane 2 (Y2=371cm)

O X

Y

Z

z

D1

OX

Plane 2
D2

d2

d1
OY

Rotor

x

y

rp 

(Y1, Z1)

(X2, Z2)1 cm2

(resolution)

DZ1

DY1

DX2

DZ2

Laser 
dot

Grid

 

Fig. 9. Experimental ANN training.  (a) Schematics illustrating the input-output data 

measurements. (b) ANN architecture. 

At any given rotor orientation, the two beams that are parallel to the (x, y) axes are 

projected onto Planes (1, 2) as two dots (D1, D2); their position vectors with respect to the 

XYZ and xyz frames are given by (25a, b) where the perpendicular distances (d1, d2) from 

the (yz, xz) planes are given by (25c): 

𝑫ଵ = ቊ
= 𝑷ଵ = [𝑋ଵ −𝑌ଵ = 𝐷௒ଵ 𝑍ଵ = 𝐷௓ଵ]்|௑௒௓

= 𝒑ଵ = [𝑑ଵ 0 𝑟௣]்|௫௬௭    
 (25a) 

𝑫ଶ = ቊ
= 𝑷ଶ = [𝑋ଶ = 𝐷௑ଶ 𝑌ଶ 𝑍ଶ = 𝐷௓ଶ]்|௑௒௓

= 𝒑ଶ = [0 𝑑ଶ 𝑟௣]்|௫௬௭   
 (25b) 
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where 𝑑௜ = ට(𝑋௜
ଶ + 𝑌௜

ଶ + 𝑍௜
ଶ) − 𝑟௣

ଶ. (25c) 

Using the quaternion q defined in (10) to describe the rotor orientation, the 3D 

projected points (D1 or D2) in the xyz frame can be expressed in the XYZ frame using (26) 

where (PXYZ, pxyz) are the position vector of the point in the (XYZ, xyz) frames:     

൤
0

𝑷௑௒௓
൨ = 𝒒 ⊗ ൤

0
𝒑௫௬௭

൨ ⊗ 𝒒∗ (26) 

Along with the constraint ||q||=1, the quaternion q can be calculated by 

simultaneously solving (26) for the pair of projected points (D1 and D2) for a specified 

rotor orientation using the Levenberg-Marquardt algorithm.  

Three 4-output-ANN algorithms are designed to investigate the effects of sensor 

configurations on the measurements: 

ANN-1 (3-input):   Three adjacent sensors, S1 S2, S3 

ANN-2 (3-input):    Three evenly spaced sensors, S1 S4, S7 

ANN-3 (11-input):  Eleven evenly spaced sensors 

Each ANN was trained with 725 input-output pairs. When collecting data for 

training an ANN, the two laser spots are positioned within the ranges of the two planes in 

the step of approximately 0.3°: 

Plane 1:   𝐷௒ଵ, 𝐷௑ଶ ∈ [−10, 50]mm   𝛼 ∈ [−2°, 8°] 

Plane 2:   𝐷௓ଵ, 𝐷௓ଶ ∈ [−8, 8]mm  𝛽, 𝛾 ∈ [−2°, 2°] 

As shown in Figure (6b) and Table 3, the stator-EMs are circumferentially 

distributed on three evenly spaced rings about the XY-plane with their magnetization axes 

passing through the stator center. Because of the symmetry, they are organized into 
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twelve pairs by series connections: for example, EM1-EM21 and EM9-EM13. In other 

words, NE/2=12 independent channels are available for measuring the back-EMF to 

estimate the angular velocity  with (9) where the orientation-dependent matrix [G] must 

be updated in real time. To improve the measurement bandwidth, [G] is precalculated 

and stored as a function of rotor orientation, where the individual magnetic flux linkage 

Λp between a PM and an EM is a function of the separation angle φ between them.  For a 

given set of (PM, EM) design parameters summarized in Table 3, f(φ) defined in (5b) can 

be numerically calculated (Appendix) and curve-fitted, from which its derivative f′(φ) for 

Gj in (7b) can be derived; the results are plotted in Figure 10. 

 

Fig. 10. Magnetic flux linkage function and its derivative. 
 

The sensor-fusion method is experimentally evaluated, where the results are organized 

into two groups: 

 ANN and KF estimated rotor-orientation (, , )   
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 Simultaneous estimation of the rotor orientation (, , )  and angular velocity 

(X, Y, Z). 

As a basis for evaluation, the results are compared with those measured by the 

optical system (Fig. 9a) and by the commercial IMU (MPU6050).  

The experimental results comparing the ANN-measured and KF-estimated Euler angles 

are presented in Figures 11(a, b) and Table 4 where eight optically measured data serve 

as ground truth to analyze the effects of different sensing methods on the mean and 

standard deviation (SD) of the orientation errors.  

Table 4. Reference rotor orientations and relative errors. 

Optically measured orientation (ground truth) for error evaluation  
Plane X1=371 (cm) Y2=392 (cm) Euler (zyx) angles (°)
Point DY1 DZ1 DX2 DZ2      

1 
8 

4 7.6 0 1.110 0.012 −0.618 
2 −4 7.8 4.8 1.140 0.680 0.632 
3 

16 
4 16.7 −0.5 2.439 −0.049 −0.620 

4 −4 15.4 1.2 2.249 0.151 0.624 
5 

24 
4 25.0 0.5 3.648 0.112 −0.611 

6 −4 24.8 2.5 3.618 0.326 0.638 
7 

32 
4 33.3 −0.2 4.854 0.023 −0.616 

8 −4 33.2 1.6 4.839 0.181 0.633 
Orientation error (°) relative to optically measured data: 

Rel. 
error 

Mean Standard deviation (SD) 

      
ANN-1 −0.832 0.431  0.414 1.015 0.306 0.683 
ANN-2    0.470 −0.212 −0.205 0.469 0.286 0.257 
ANN-3 −0.106 −0.014 −0.073 0.080 0.039 0.070 

KF −0.090 0.001 −0.051 0.052 0.050 0.081 

 

As shown in Table 4 where the (mean, SD) errors are compared among the three 

different ANN-based sensing systems (ANN-1, 2, 3), the 11-input ANN-3 exhibits the 

best performance (where both the mean and SD of the errors are less than 0.1°) followed 

by the 3-input ANN-2. Although three single-axis MFD-sensors are sufficient to uniquely 
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estimate the rotor orientation, the (mean, SD) errors of ANN-2 are half of that of ANN-1 

implying that sensor placement has an influential effect on measurement errors. The 11-

input ANN-3, with its (mean, SD) errors nearly an order of magnitude lower than that of 

the 3-input ANN-1 and 2, is used in the subsequent studies.   
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Fig. 11. Relative errors of ANN-measured and KF-estimated Euler angles. (a) Eight points in Table 4. (b) 

Arbitrary trajectory. 

Experiments are conducted to analyze the effects of three different sensor-fusion methods 

on simultaneous estimation of the Euler angles and their angular velocities along an 

arbitrary orientation trajectory: 

Method 1 (IMU): Euler angles are estimated using a complementary filter with 

acceleration and angular-velocity measurements [31]. 

Method 2 (ANN-3): Euler angles are estimated using ANN-3 with all MFD sensor 

measurements. 

Method 3 (KF-based sensor fusion): Both Euler angles and their angular velocities are 
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simultaneously estimated using KF with the ANN-3 and EMF measurements. 

The results are compared in Figure 12 and Table 5.  The left column of Figure 12 

compares the Euler angles estimated using IMU measurements, KF-based sensor fusion 

method and ANN-3 model whereas the right column compares the angular velocity 

measured/estimated by the IMU and the KF-based sensor fusion. The statistics of their 

differences between the results from IMU and the KF-based sensor fusion method are 

compared in Table 5. 
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Fig. 12. KF and IMU comparison for orientation and angular velocity. 

Table 5. Statistics of the orientation and angular velocity difference between KF estimation and IMU. 

Difference  
Orientation () 

(, , )   
Angular velocity (/s) 

(X, Y, Z) 

Mean (0.0168, 0.0831, 0.0421) (0.1520, −0.0143, −0.0025) 

STD (0.6572, 0.9368, 1.475) (0.1856, 0.1523, 0.0825) 

 

 Shown in Figure 12, the ANN-3 and the KF display nearly identical estimations 

of the arbitrary orientation trajectory. However, as observed in Figure 11(b), ANN-3 data 

are noisy and hence cannot be used to derive the velocities from the first derivative of the 
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Euler angles. In contrast, the orientation trajectory data which are numerically integrated 

from the measured velocity, is smooth but suffers noticeable drift after 5 seconds when 

the rotor stops moving, especially the β angle.     

As demonstrated in Figure 11, Figure 12, and Table 5, the KF- based sensor 

fusion with embedded MFD and EMF sensors effectively overcome the sensor noise and 

IMU drift problems and is capable of simultaneously estimating both the orientation and 

angular-velocity with improved accuracy and smaller SD than that of the popular IMU 

measurements. 

4.3 Control Experimental Results and Analysis 

The accuracy and effectiveness of the PMSM control scheme is tested and 

analyzed. Specifically, the system’s ability to achieve regulation and tracking control are 

to be verified. The regulation control can be evaluated by providing a static orientation 

input to the SMC and comparing the orientation output of both sensor readings and 

ground truth measurements. Similarly, the tracking control can be evaluated by analyzing 

the response providing a dynamic orientation input. 

The operating range of the experiments correspond to the orientation necessary 

such that the optical system in Figure 9(a) can point a laser within an 45cm x 15cm 

rectangular range on whose center is on Plane 2 placed at (𝑋ଶ=0, 𝑌ଶ=117cm) and the 

orthogonal laser can maintain a vertical range of ±7.5 cm on Plane 1 (𝑋ଵ=117cm, 𝑌ଵ=0). 

The range on Plane 2 is discretized into a 12 x 15 grid and the Plane 1 range is separated 

into 12 segments, which correspond to an array points representing 𝑫𝟏 and  𝑫𝟐 in (25). 
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(26) can then be solved for each point which providing corresponding rotor orientations 

that the calibration module is then used to train an ANN. 

 For each experiment, the control loop operates at 500 Hz. Multiple signals are 

filtered in real time using second order lowpass Butterworth filters with varying cutoff 

frequencies. The measured magnetic field, orientation derivative terms, calculated control 

law, and control signal are filtered with a cutoff frequency of 2, 5, 3, and 10 Hz. 

4.3.1. Regulation Control 

Four step inputs (𝜽ௗ) are tested the system response for each is analyzed for its 

ability to reach a desired point. The first three points are single-axis inputs corresponding 

to X, Y, and Z axis, where only the respective component of 𝜽ௗ for each point is nonzero.  

The fourth point tested corresponds to a general case, where each component of 𝜽ௗ is 

nonzero. Parameters including peak time, rise time, maximum overshoot, and steady state 

error can then be studied as a basis of performance metrics. The values of the 

proportional gains and the smoothing constant are tuned to optimize performance, where 

[𝒌] = 𝑑𝑖𝑎𝑔(50, 45, 18), [𝑷] = (20, 45, 23) and Ω = 1.25 for the following regulation 

experiments. The tests are performed and the results along with input parameters are 

depicted in Table 6. The recorded parameters include steady state value (SSV), steady 

state error (SSE), rise time (𝑇௥), peak time (𝑇௣) , max overshoot (Max OS), settling time 

(𝑇௦), and the steady state error band. 
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Table 6. Regulation Control Results 

 

Analyzing the results of the single axis step inputs (points 1-3) shows that the 

largest steady state error is approximately 0.095° in magnitude corresponding to the Z-

axis step and the smallest steady state error is approximately 0.029° corresponding to the 

X-axis step. Generally, the X-axis step performed the best as it resulted in the lowest 

steady state error, peak time, and rise time. The larger error in the Z-axis step could 

possibly be a result of unmodeled nonlinear torque effects from the WCR. 

 Comparing the single axis step results to multi-axis step results, the performance 

parameters of the X-axis remains relatively unchanged where the other axes show a 

slower time response and higher steady state error. Figure 13 compares the desired 

orientation and torque vs the measured in addition to the value of the sliding surface s for 

each axis component of the fourth point.  

  

𝑷𝒐𝒊𝒏𝒕 𝜽𝒅(°) 𝑺𝑺𝑽(°) 𝑺𝑺𝑬(°) 𝑻𝒓(𝑠𝑒𝑐) 𝑻𝒑(𝑠𝑒𝑐) 𝑴𝒂𝒙 𝑶𝑺(°) 𝑻𝒔(𝑠𝑒𝑐) 𝑻𝒔 𝑩𝒂𝒏𝒅 

𝟏 (-2.292, 0, 0) -2.263 -0.029 0.131 0.164 -0.830 0.534 2% 

𝟐 (0, 2.292, 0) 2.327 -0.035 0.250 0.2698 0.168 0.307 2% 

𝟑 (0, 0, 2.865) 2.960 -0.095 0.272 0.364 1.325 0.426 5% 

𝟒 

𝜃𝑥: -2.292 -2.372 0.080 0.130 0.166 -1.032 0.562 2% 

𝜃𝑦 : 1.719 1.874 -0.155 0.176 0.406 0.261 0.434 5% 

𝜃𝑧: 2.865 3.054 -0.189 0.144 0.172 1.043 0.555 5% 
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Fig. 13. Multi-Axis Regulation Control Results 

It can be seen that the orientation response stabilizes near the desired value. The 

behavior of the sliding dynamics also validates the regulation control capabilities, as 𝒔 

can be seen to stabilize at 0. The convergence of the measured and desired torque 

signifies that the physical system is able to track the control law correctly. The noise 

apparent in the desired torque can be explained by the noise that propagates through 

orientation sensitive terms that are discretely derived in the desired control law in (21a, 

b).  

The larger steady state error corresponding to the Y and Z axes could be explained 

by the selection [𝒌] and Ω, where decreasing Ω or increasing [𝒌] can reduce steady state 

error but also increases overshoot and reduces stability. When the smoothing constant is 

high or [𝒌] is small, less control effort will be applied when measured orientation is close 

to its desired value which could explain higher steady state errors. However, if Ω is too 
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small and [𝒌] is too large, oscillatory behavior is more likely which can lead to instability 

and more chatter. Similarly, larger values of [𝑷] are observed to improve response time 

reduce SSE but can lead to unstable behavior if chosen to be too large. As [𝑷] is 

multiplied by error terms in (18a, b), sharp discontinuities introduced by noise will have 

exaggerated effects on the control law. Therefore, the choosing of the control gains and 

smoothing constant should be tuned to minimize error and chatter while also avoiding 

unstable oscillatory behavior.  

4.3.2 Tracking Control 

The PMSM control system is then to be verifies by analyzing the system’s 

response to a dynamic input. Figure 14 depicts the results of the experiment, showing the 

individual axis components of the measured and desired orientation and torque in 

addition to the sliding dynamics for [𝒌] = 𝑑𝑖𝑎𝑔(50, 45, 22), [𝑷] = (50, 40, 23) and Ω =

0.85. 

 

Fig. 14. Circular Trajectory Tracking Control Results 
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It can be seen that the measured orientation closely resembles the desired 

orientation for the 𝑌 and 𝑍 axis. A discrepancy in the X axis orientation curves could be 

explained as a sensitivity issue as the desired trajectory is near-zero. Observing the 

sliding dynamics indicate that 𝒔 is centered around 0, but with notable noise. The noise of 

the Z component of 𝒔 remains relatively constant, but a significant increase can be seen in 

the 𝑋 and 𝑌 component around the 6 second mark. A noticeable increase in noise can also 

be seen in the X and Y component around the same time. As 𝒔 is directly correlated to 

orientation error and the corresponding derivative, the increase of noise in s can be 

concluded to be a result of increased noise in measurements. 

It is expected that the measurement noise is orientation dependent as a direct 

result of the sensitivity of the ANN sensing model. The accuracy of the ANN model is 

not constant throughout its domain, meaning some orientations will have higher 

uncertainties than others. These regions of higher error will propagate through [𝑲𝑻]ିଵ, as 

it is trained using an orientation dependent ANN which is subject to the same problem. 
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Chapter 5: Concluding Remarks and Future Work 

The unique magnetic sensing system and a SMC algorithm is implemented in a 

PMSM design. The proposed sensing model is shown to solve the magnetic inverse 

problem, such that a bijective property can be established between MFD measurements 

and rotor orientation. From this, a KF sensor fusion algorithms combines angular velocity 

estimates from back-EMF measurements and orientation estimates from MFD 

measurements using an ANN. The sensing model is validated from experimental results 

showing that the orientation estimates closely resembling ground truth measurements 

collected from an optical system. A first order SMC algorithm is then applied to control 

the nonlinear system and experiments show that tracking and regulation control is 

achieved. These results are promising, and lead way to future improvements and 

research. 

WCR Dynamic Effects 

 The dynamic effects of the WCR are modeled as a function of tilt angle, resulting 

in a corresponding torque along the respective axis. The experimental results suggest that 

the WCR also has a significant effect on the Z axis torque which is not included in the 

model. Reducing the size of unique magnets of the upper WCR ring could reduce this 

effect but would also decrease the signal-to-noise ratio of the ANN sensing component in 

addition to reducing the desired effectiveness of the WCR. Therefore, a more 

sophisticated model of 𝑻𝒓(𝜽) could be realized over the entire domain of the PMSM with 

consideration of all WCR elements using commercial simulation software. 

 The undesired effects of 𝑻𝒓(𝜽) on the Z axis could be reduced by increasing the 
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quantity of 𝑁ௐ WCR magnets.  It is expected that this would decrease nonlinearities 

previously described as the magnetic torque for a given tilt angle would be more uniform 

varying spin angle. 

 It can be argued that the WCR can be eliminated from the PMSM system entirely. 

Removing the bottom layer of in an application where a PMSM is used in a robotic 

manipulator, the Z axis of the stator will likely not always be parallel to gravity, further 

complicating the WCR effects. The gravity compensation can be instead realized through 

additional control effort applied to the EMs, removing the need to model Z axis-

nonlinearities from the WCR effects.    

Calibration Module 

 The accuracy and precision of ANN orientation sensing model is directly 

corelated to the quality of data collected from the calibration module. Improvements to 

the design should be made such that the calibration module origin and the rotor origin are 

almost perfectly aligned. Also, a method to ensure that both the device and rotor start in 

the same position during every data collection sequence would improve the repeatability 

of data collection, allowing for data sets to be reused over time. A future iteration of the 

calibration module should be designed with high precision and tight geometrical 

tolerances, increasing the certainty that the true rotor orientation aligns with the expected 

orientation from the stepper motor gantry system. However, improvements in accuracy 

should not sacrifice the speed of data collection, as the amount of points required 

increases exponentially as the range of calibration is made larger. Therefore, the diameter 

of tracks can be made smaller in addition to increasing the gear ratios, minimizing the 



42 
 

distance and steps required to move to a desired orientation. 

Higher-Order SMC 

The effects of system performance when using a higher order SMC should be 

investigated. Although the complexity of calculating the control law would increase, it is 

expected that chatter would be reduced, and the convergence accuracy would increase. 

Also, PID gains can be implemented into the second order sliding surface which would 

allow for more parameters to tune desired performance.  

  



43 
 

References 

[1] K.-M. Lee, K. Bai, and J. Lim, "Dipole Models for Forward/Inverse Torque 
Computation of a Spherical Motor," IEEE/ASME Transactions on Mechatronics, 
vol. 14, pp. 46-54, Feb 2009. 

[2] F. William, E. Laithwaite, and L. Piggot, "Brushless Variable-Speed Induction 
Motors," in Proc. IEE, no. 2097U, pp. 102-118, 1956. 

[3] F. William, E. Laithwaite, and G. Eastham "Development of Design of Spherical 
Induction Motors," in Proc. IEE, no. 3036U, pp. 471-484, 1959. 

[4] E. Laithwaite, "Design of Spherical Motors," in Electrical Times, vol. 9, pp. 921-
925, 1960. 

[5] Z. Zhouu and K.-M Lee, “Real-time motion control of a multi-degree-of-freedom 
variable reluctance spherical motor,” in Proc. IEEE Int. Conf. on Robotics and 
Automation, vol. 3, pp. 2859-2864, 1996 

[6] K.-M. Lee, R. Sosseh, and Z. Wei, "Effects of the torque model on the control of a 
VR spherical motor," in Control Engineering Practice, vol. 12, pp. 1437-1449, 
Nov. 2004. 

[7] K.-M. Lee, G. Vachtsevanos, and C. Kwan, "Development of a spherical stepper 
wrist motor," in Proc. IEEE, Conf. on Robotics and Automation vol. 1, pp. 267-
272, 1988 

[8] K.-M. Lee and C. Kwan, "Design Concept Development of a Spherical Stepper for 
Robotic Applications," IEEE Trans. on Robotics and Automation, vol. 7, pp. 175-
181, Feb 1991. 

[9] K.-M Lee, X. Wang, “Dynamic Modeling and Control of a Ball-Joint-Like 
Variable-Reluctance Spherical Motor,” In IEEE American Control Conf. pp. 
2463–2467, 1992. 

[10] R. L. Hollis, S. E. Salcudean, and A. P. Allan, "A six-degree-of-freedom 
magnetically levitated variable compliance fine motion wrist: Design, modeling 
and control," IEEE Trans. on Robotics and Automation, vol. 7, pp. 320-332, 1991. 

[11] K. Kaneko, I. Yamada, and K. Itao, "A Spherical DC Servo Motor with Three 
Degrees of Freedom," ASME, Dynamic Systems, Measurement, and Control, vol. 
11, pp. 398-402, 1988. 

[12] T. Shigeki, G. Zhang, and M. Osamu, "Development of New Generation Spherical 
Ultrasonic Motor," in 1996 IEEE Int. Conf. on Robotics and Automation, pp. 
2871-2876, 1996. 



44 
 

[13] T. Amano, T. Ishii, K. Nakamura, et al., "Ultrasonic actuator with multidegree of 
freedom using bending and longitudinal vibrations of a single stator," in Proc. 
IEEE Ultrasonics Symp., pp. 667-670, 1998. 

[14] K.-M. Lee and D. Zhou, "A real-time optical sensor for simultaneous measurement 
of three-DOF motions," IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 
499-507, 2004. 

[15] H. Garner, M. Klement, and K.-M. Lee, "Design and Analysis of an Absolute 
Non-Contact Orientation Sensor for Wrist Motion Control," in Proc. IEEE/ASME 
Int. Conf. on Advanced Intelligent Mechatronics, 2001, pp. 69-74. 

[16] Z. Qian, Q. Wang, X. Guo, et al., “Research of orientation detection method for 
spherical motor and effect on PD control system based on machine vision,” in 
Pages 2186–2191 2014 17th International Conference on Electrical Machines and 
Systems (ICEMS). IEEE. 2014. 

[17] H. Son, and K.-M. Lee, “Two-DOF magnetic orientation sensor using distributed 
multipole models for spherical wheel motor,” Mechatronics, v. 21, n. 1, pp. 156-
165, 2011. 

[18] K. Bai and K.-M. Lee, “Direct field-feedback control of a ball-joint-like 
permanent-magnet spherical motor,” IEEE/ASME trans. on Mechatronics, v. 19, n. 
3, pp. 975-986, 2014. 

[19] S. Foong, K.-M. Lee, and K. Bai, “Harnessing embedded magnetic fields for 
angular sensing with nanodegree accuracy,” IEEE/ASME transactions on 
mechatronics, v. 17, n. 4, pp. 687-696, 2012. 

[20] K. Bai, K.-M. Lee, and J. Lu, “A magnetic flux model based method for detecting 
multi-DOF motion of a permanent magnet spherical motor,” Mechatronics, v. 39, 
pp. 217-225, 2016. 

[21] J. Xu, Q. Wang, G. Li, R. Zhou, Y. Wen, L. Ju, and S. Zhou, “Sensorless posture 
detection of reluctance spherical motor based on mutual inductance voltage,” 
Applied Sciences, v. 11, n. 8, pp. 3515, 2021. 

[22] F. Chai, L. Gan, and L. Chen, “A novel tiered type permanent magnet spherical 
motor and its rotor orientation measurement principle,” IEEE Access, v.8, pp. 
15303-15312, 2020. 

[23] J. Wang, G. Jewell, and D. Howe, “Design and control of a novel spherical 
permanent magnet actuator with three-DOF,” IEEE/ASME Trans. Mechatronics, 
vol. 8, no. 4, pp. 457–468, Dec. 2003. 



45 
 

[24] Y. Liang, I. M. Chen, C. K. Lim, et al., “Design and analysis of a permanent 
magnet spherical actuator,” IEEE/ASME Trans. Mechatronics, vol. 13, no. 2, pp. 
238–248, Apr. 2008. 

[25] H. Son and K.-M. Lee, "Distributed multipole models for design and control of 
PM actuators and sensors," IEEE-ASME Trans. on Mechatronics, vol. 13, pp. 228-
238, Apr 2008. 

[26] C. Xia, C. Guo, and T. Shi, "A Neural-Network-Identifier and Fuzzy-Controller-
Based Algorithm for Dynamic Decoupling Control of Permanent-Magnet 
Spherical Motor," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 2868 - 
2878, 2010. 

[27] Y. Zhao, S. Li, L. Zhao, et al., “Sliding-mode Control of Permanent Magnetic 
Spherical Motor based on Co-simulation Platform,” in IEEE 11th Conf. on 
Industrial Electronics and Applications, pp. 119-123, 2016. 

[28] K. Bai, H Yan, K.-M. Lee, “Robust control of a spherical motor in a moving 
frame,” Mechatronics (Oxford), vol. 75, pp. 102548, 2021. 

[29] M. Li, and J. Ammanabrolu, “Indoor way-finding method using IMU and 
magnetic tensor sensor measurements for visually impaired users,” Int. J. of 
Intelligent Robotics and Applications, v. 5, n. 2, pp. 264-282, 2021. 

[30] R. Kalman, “A new approach to linear filtering and prediction problems,” J. of 
Basic Engineering, v. 82, pp. 35-45, 1960. 

[31] H. Fourati, “Heterogeneous data fusion algorithm for pedestrian navigation via 
foot-mounted inertial measurement unit and complementary filter,” IEEE Trans. 
on Instrumentation and Measurement, v. 64, n. 1, pp. 221-229, 2015. 

[32] K. Bai, “Direct field-feedback control for permanent magnet spherical motors,” 
Ph.D. dissertation, College of Mech. Eng., Georgia Inst. of Tech., 2012 

[33] J. D. Jackson, Classical Electrodynamics: New York: Wiley, 1999. 

 
 

  

  
  



46 
 

Appendix 

Magnetic Flux Linkage Computation of a PM-EM Pair [20] 

The magnetic flux linkage Λp contributed by a PM in the EM winding is a 

function of the separation angle  (Fig. 1b).  For an EM (volume VE) that can be treated 

as a contiguous filamentary conductor (wire cross-sectional area a), Λp can be derived in 

terms of the vector potential Ap generated by the PM from the volume integral (A.1) 

where the polarity λ (= 1, −1) denotes the sign of the PM magnetization and l is the 

directional vector of the winding: 

𝑓(𝜑) =
Λ௣

𝜆
=

1

𝑎𝜆
න (𝑨௣

௏ಶ

⋅ 𝑰)𝑑𝑣 (A.1) 

For a PM (magnetization M) with a volume Vp bounded by surface area Sp, its vector 

potential Ap at a point of interest can be computed from the sum of the volume and surface 

integrals in (A.2) where an is the unit outward normal vector from ds and R is the distance 

from the source point to the point of interest:  
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Magnetic Flux Density Calculations for PMs and EMs 

To understand the dynamics due to electromagnet effects, the various magnetic 

fields must be first quantified. From the Biot-Savart law [32], the vector quantity of 𝑩 

produced at a point in space from an EM can be found using Equation (A.3), and the 
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vector quantity of 𝑩 produced at a point in space can be found from the negative gradient 

of the analytic magnetic potential [33] shown in Equation (A.4). 

𝑩ாெ =
𝜇଴

4𝜋
න

𝑱 × (𝑹 − 𝑹ᇱ)

|𝑹 − 𝑹ᇱ|ଷ
𝑑𝑉

௏

 (A.3) 

𝑩௉ெ =
𝜇଴

4𝜋
න

−(∇ ⋅ 𝑴)(𝑹 − 𝑹ᇱ)

|𝑹 − 𝑹ᇱ|ଷ
𝑑𝑉

௏

+
𝜇଴

4𝜋
න

−(𝑴 ⋅ 𝒏)(𝑹 − 𝑹ᇱ)

|𝑹 − 𝑹ᇱ|ଷ
𝑑𝑆

ௌ

 (A.4) 

Here, 𝜇଴ is the permeability of free space, 𝑹 is the position vector of the field 

point, 𝑹 is the position vector corresponding to the point of interest in which the MFD is 

calculated,        𝑱(=
ூ

஺
𝒏) is the current density at the field point, and 𝑴 is the 

magnetization vector of a PM.  

Assuming the cylindrical PMs are uniformly axially magnetized, the first term in 

Equation (A.4) reduces to 0 and we are left with the surface integral term.  

Magnetic Induced Force Calculations 

 The force created between interacting magnetic fields can be described using the 

Lorentz force equation shown below. 

𝑭௠ = − ර 𝑩 × 𝐼 𝑑𝒏   𝑤ℎ𝑒𝑟𝑒   𝐼 = ඾ 𝐽𝑑𝑆 (A.6) 

Here, 𝑭௠ is the magnetic force created from the interaction between MFD 𝑩 with 

current I, which can be calculated as the equivalent surface current with surface element 
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dS and current density J. For a PM, the vector current density can be calculated to solve 

Equation (A.6) using the following expression. 

𝑱௉ெ = 𝒂௡ × 𝑴 (A.7) 

Here, 𝑱௉ெ is the vector current density, 𝑴 is the magnetization of a PM, and 𝒂௡ is 

the unit vector normal to the surface of a PM. As the PMs are axially magnetized, only 

the cylindrical surface of a PM will have an equivalent surface current. 
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