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In recent years, the study of three-phase inverter controls has become important
with the rising use of renewable energy sources (RES) in the form of distribution
generation (DG). Many control types have been developed for DG inverters and others
were traditional controls for the generation of the main grid power that were adapted for a
system with less inertia. Among these controls is the model predictive control (MPC)
which allows for a fast transient response and good reference tracking. One disadvantage
of the MPC is that it does this prediction and optimization online which can limit the
applications due to computational loading. Although there are some solutions to this
problem in the form of a finite control-set MPC (FCS-MPC) which takes advantage of the
only two states of a switch mode converter to reduce complexity, this still takes the form
of a nonlinear online optimization problem.

However, compared with the continuous control set (CCS) MPC, using the FCS-
MPC may result in poor performance due to the degradation of the switching frequency.
The high computation of CCS-MPC prevents it from being implemented in the resources-
limited digital signal processor (DSP). To reduce the computational burden, machine
learning (ML) methods such as artificial neural networks (ANN) are used for learning the
input and output of the MPC. This thesis compares the ANN-MPC, and support vector
machine (SVM) based MPC in a three-phase inverter. A comparison of total harmonic

distortion (THD), and reference tracking during different scenarios will be provided.
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Chapter 1 : Introduction

This chapter will view techniques that can be used in the control loop of three phase
inverters. Among these controls is the model predictive control (MPC) which will be a

focus in the thesis.

1.1 Background

Distribution generation (DG) systems are becoming more popular because of price fall
in renewable energy components [ 1] such as solar power and wind turbine systems. Recent
events such as the Texas grid failure of 2021 [2] displayed reliability issues in the main
electric grid that could be remedied by back up DG systems at the distribution level. The
problem with harvesting renewable energy sources (RES) is that the resulting electric
power is in a form incompatible with the mains grid which is transported as alternating
current at 60Hz. RES such as solar array produces voltage and wind power produces DC
and AC voltage at variable frequencies, respectively; the inverter plays an essential role in
DG integration. The rise in RES integration in recent years has made the study of inverter
control increase in importance. Due to this, traditional control schemes used in industry are
being implemented in power electronics and new models including machine learning
techniques are being researched to meet the demand. This thesis focuses on machine

learning based MPC as a possible alternative to the conventional MPC for this application.

1.2. Control Schemes for Power Converters



1.2.1 Modelling the System

Before the control schemes are discussed, a proper model of a power converter
needs to be established, a three-phase voltage source inverter will be used and discussed in
this paper. A popular way to represent a system is the state-space averaging (SSA) model
since it uses the average state of the transistors in switch-mode power converters that are
used for pulse-width modulating (PWM). The process of describing a power converter
using the SSA method begins by using electrical principles to obtain the differential

equations to describe the system.

)

Jl+
\|
]

= T L]

I =
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Figure 1.1: Half-bridge voltage-source inverter.

For a three-phase inverter as shown in Figure 1.1, each phase is ideally symmetrical
with respect to structure and component values. This is because we want the phases to be
balanced so minimal current is carried in the neutral conductor. Because of this symmetry,
a single phase can describe the rest of the system by shifting the phase angle. The

differential equations can be used to describe the state-space representation of the inverter



which can be used to synthesize controllers. Equation 1.1 shows the state-space model for

a single-phase inverter.

14
r 1 l Zdc
L1 k
x =\, 1 + U (1.1)
C R-C
vc 0

where x = [ir, v¢] is the monitored states and u is the duty cycle for the PWM module. Since
the inverter consists of three phases, the PWM will be shifted by 120 degrees for the

remaining two phases.

1.2.2 Rotational Reference Frames

The inverter outputs three phases that are separated by 120 degrees as necessary for
a three-phase balanced system. These three output signals can be converted into simpler
signals by using the rotational reference frames. Two popular frames transformations are

the Clarke (0-P) and the direct-quadrature transformation.
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Figure 1.2: Three-phase voltages and its Clarke transform representation.
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The Clarke transform represents a three-phase system which is the standard for the

electric power distribution industry in two orthogonal components. This greatly reduces

the complexity of the system as it only needs one phase and its 90-degree phase shift

representation. When using these signals for control purposes, the complexity of the system

is reduced by changing the need from 3 controllers to 2 with a 90-degree phase delay in

each one.

alpha-beta

Voltage(V)

—— Apha
la

Voltage(V)

Figure 1.3: alpha-beta and DQZ transform.
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The DQ transform is a combination of two transforms, one of which is the Clarke
transform. The other is the Park transform which rotates with the a-p stational frame to
make them constant. This transform is particularly useful since it simplifies the control
synthesis from a time varying output signal to a constant signal that is easier to track by

controllers.

1.2.3 PID Control
A common control is the Proportional-Integral-Derivative (PID) controller which
utilizes three components to alter the error between the reference and the sampled system’s

output.

Figure 1.4: PID control structure.

In power converters, the PID is mostly used as a Proportional-Integral (PI) control

by setting the derivative component to zero on the structure shown in figure 1.4. The



common converter control consists of dual control loops: the outer loop is for tracking and
maintaining the voltage at a certain level while limiting the current references, and the inner
loop is for tracking the reference current provided by the outer loop. Digital tuning
software such as MATLAB has made tuning PI controllers easy and readily available

digital signal processors (DSP) modules make programming the controllers accessible.

+ +
v.ﬁv Gov(S) a%}—» Goiis) ——>»  Gds) ~—r—> @ Gus) —F—>

Figure 1.5: Voltage and current control loops.

The PI control can be paired with the rotational reference frame since the DQ
components are constant, which further simplifies the design of the controller. The control
output would then be used to control the duty cycle of switch mode converters like the

inverter seen in figure 1.1.

1.3 A literature Review of the MPC

1.3.1 The Model Predictive Control
MPC has become a popular method for power electronics with the increasing
computation power of micro controllers and DSPs. MPCs work by using the system’s

transfer function and state variables to optimize a cost function across several future sample



steps. This optimization predicts the best control effort over the sample steps considered.
The number of steps is called the control horizon and a longer predict horizon result in

more computations to be done per sample period.

[ .
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Figure 1.6 MPC Control loop with a three-step control horizon.

A

The MPC can use the alpha-beta reference frame for tracking the plant’s output. Figure

1.7 illustrates the MPC’s online optimization.
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Figure 1.7: MPC online optimization in discrete time.

MPC has several advantages such as the easy inclusion of nonlinearities and
constraints due to the online calculations performed every sample step which leads to good
performance in three-phase inverters [4]-[6]. There are two MPC types, one is continuous
control set (CCS) MPC and the other is finite control set (FCS) MPC [7]. Unlike CCS-
MPC in which the switch status is varied in each period, the FCS-MPC only considers a
finite set of states and switches status within entire sampling period is either on or off,
which greatly reduces prediction states. However, the CCS-MPC has better performance

than the FCS-MPC.

1.3.2 Cost Function and Optimization
Various MPC algorithms propose different cost functions to obtain the control law

[4]. The cost function typically includes the differences between the reference signal and



the sampled output (also called the error), and the control effort which is the rate of change

of the input control output over the control horizon; they are organized with different

weight. Along with constraints to inputs, outputs, and horizons, the tuning of an MPC

consists of parameter optimization. The traditional objective can be expressed as follows:
minJ = Y% [we - le(k + )12 +wy, - [Au(k + i = 1)|?]

(1.4)

where the error term |e(k + j)| can be considered as the difference between the reference
and the predicted values of the output; Au(k + i — 1) term indicates the rate of change of
the control input across the control horizon. It should be noted that the rate change of the
control actuation can be subject to constraints which are considered when optimizing the
problem. These constraints can be used to limit the control’s output extrema and rate of

change per sample interval.

1.3.3 Disadvantages

One of the main disadvantages of the MPC is the dependence on the system model in
which there is load and parameter uncertainty. Other phenomena like faults, quick changes
in loading, or nonlinear loading could affect the performance since the state predictions are
based on a pre-configured plant model.

Another disadvantage is the high computational cost due to an online optimization
problem within every sampling interval. These challenges are the main motivation for

exploring and comparing other controls to the MPC.
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Chapter 2 : Literature Review of Machine Learning Based

MPC

This chapter gives a brief introduction to machine learning like artificial neural
networks (ANNs) and support vector machines (SVMs) which use data from a controller
to perform a curve fit that can be used in a control loop for a three-phase inverter. The
controller’s optimization occurs offline in contrast to the online optimization of the MPC.
This thesis explores if offline optimization can achieve better performance than a online

MPC when a machine learning based MPC is used.

2.1 Machine Learning Based MPC

Two machine learning techniques, the e-SVM and the Radial Basis Function-Artificial
neural network (RBF-ANN) are the methods used and compared in this thesis. SVM has
been found to be a more efficient method [9] in certain applications which is essential when
working within the limits of widely used DSPs. The following sections will explore these

two methods and their operation.

2.1.1 Structure

The RBF-ANN is an artificial neural network which is trained with an activation
function that takes the form of a radial basis or gaussian curve. The ANN training algorithm
uses gradient descent which attempts to find a minimum in error between the model’s

output and the training output values; this would produce a response that models the
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training input and output [9]. ANN-MPC has historically been the method of choice when

considering power electronics machine learning based control models [10]-[12].

Figure 2.1: ANN architecture.

The figure above shows how the inputs interact with the ANN parameters to sum
up to an output. The relationship between the input and output can be expressed by the
following:

Y= Y'w;-¢p(x,c,0)+w
2.1
The relationship above shows how the output is a sum of weighted inputs plus a bias.
The weights are part of the activation function, and they depend on parameters
corresponding to the nature of the activation function. As an example, a radial basis

function (RBF) will have a spread and a center or mean associated to it. The mean and
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spread can be derived from the dataset collected for training. It’s important to note that
while ANNs are very good at imitating systems they are limited by the samples given, i.e.,

an ANN would not do well for new samples that was not learned.

The SVM gets its name from the support vectors that make up its performance.

These support vectors interact with the input and add together to create the output that

best fits the trained output. SVMs have been traditionally used in classification and

regression problems such as face recognition. As a control system, the SVM is used as a

regression tool that fits the relationship between the input and output in a higher

dimensional space. The e-SVM mapping function describes a hyperplane that separates
the data in a higher dimensional space with a plane. i, = w’ - @(Xy) + b

(2.2)

where w’ represents the normal vector to the hyperplane, ¢(X) indicates the SVM’s kernel

or activation function, and b is the bias or offset. Figure 2.2 shows the linear relationship

in the higher dimensional space which can easily separate the points. The linear separation

in high dimension is equivalent to nonlinear separation in low dimension.
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X2

\ 4

X1

Figure 2.2: SVM hyperplane

This separated data can then be used to create an error margin using a distance called
the epsilon margin or e-tube. The samples inside the tube are said to have no error while
the samples outside are called the support vectors. A tube of zero distance is called a hard
margin SVM and it can cause problems since it regards all samples as erroneous, and the
optimization can cause overfitting that losses generalization. For this reason, in this thesis,
a soft margin SVM will be used meaning that there will be a greater than zero epsilon value
leading to a reduced number of support vectors along with computational cost, and greater

generalization.
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\ 4

Figure 2.3: Epsilon tube.

Given the that the error samples are defined as those lying outside the e-margin,
one can use this margin and the orientation of the hyperplane to optimize the performance

of the SVM. This takes the form of:

Min=ww +y Zi_; (G + &) (2.3)
uy,—w-oX) —b< & +e¢
sstAaw-oX)+b—u < & +¢ (2.4)
Vk: Ek' f; > 0

Positive Lagrange multipliers are used in formulating the optimization problem and
introducing variables &, , k= 1,2, ..., n allows us to flex the error margin for problems like
controls [8]. The non-zero terms &, and &, then become support vectors in the regression

model which are used to program a controller.
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2.1.2 Data Preprocessing

Training a neural network can vary on efficiency depending on the data it is given.
As stated in the previous section, some parameters depend on the activation function or
kernel which can be derived from the training set. Normalizing the input and output is a
simple yet effective way of improving performance in training. Because inputs could be of
different scales such as voltage and current, normalizing the input prevents the voltage
from having a greater influence on the output since in general it will be a larger value.
Proper format is another important factor in preparing data since the input should be in a
format that represents the model and can be fed into the training vector. The output vector

should also be in a format that can be compared to an ideal output for analysis.

2.1.3 Training and Fitting Performance.

Training data should include a complete scope of the inputs that are possible for the
system to encounter. SVM controls can be more general if the soft margin SVM mentioned
is employed. This only happens if there is no overfitting during training. Overfitting
occurs when the SVM is forced to fit a curve with strict constraints and an excessive
number of hidden units. A balance must be reached during training to avoid getting a
system with very large amounts of hidden units despite the low error. Figure 2.1.5 below
shows how a sinusoidal curve can fit a data set with a seemingly linear trend. Both line and
the sinusoid shown could have similar errors when fitting the curve. A low number of
support vectors is also desirable because it would reduce the resources needed for the

application.
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X2 X2 .
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Figure 2.4: Overfitting of the SVM.

To compare the effectiveness of the methods, controllers will be compared in different
aspects such as total harmonic distortion (THD) in the output, dynamic loading, and
computational loading [14]. The Machine learning controllers are expected to perform

similarly to the MPC but using less computational resources.
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Chapter 3 : Simulations

In this chapter, simulation studies and results will be described. The methods and
parameters used for the simulations were picked to model the three-phase inverter
described in chapter 1. For this thesis, MATLAB/Simulink environment was used to model
and design controls and later as a programming tool for the controller used during testing.
The results from the simulations are used to set expectations for the controllers performing

on hardware.

3.1 Simulation Studies

The first step is to use a script including the inverter parameters and state-space
average model to design the MPC which will be served as the reference controller in this
thesis. Using MATLAB’s “mpcdesigner”’, an MPC Simulink model was created with small
prediction and control horizon to minimize computational loading. Figure 3.1 shows MPC

designer while creating the controller and testing a sinusoidal response.
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Figure 3.1: MPC design tool.
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A Simulink model was then created along with the plant to output the voltage

needed to simulate the control loop. The sampling time of the control was set to be the

same as the switching period which was 20us. Similarly, the L-C filter and power supply

were set the same as the nominal values for the inverter. Figure 3.2 shows the inverter

control loop used for estimating the MPC’s performance.
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Figure 3.2: Inverter and MPC control loop.

The THD, power factor, and reference tracking were observed in the simulation
using scope tools and were deemed acceptable when the THD was below 5%, pf was close
to unity, and the reference error was less than one percent. When the MPC has good
performance, it could then be used to gather data for training the SVM and ANN as
illustrated in the previous chapter. The following figures show the MPC’s three-phase
voltage with each reference phase, the THD as measured by a THD block and the phase A
current under a 47 Ohm load. The error is also shown to be around 1.2V maximum between

the alpha voltage signal and the reference.
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Figure 3.4: MPC error tracking.

As seen in chapter 2, the SVM and ANN require data from the system they are to

imitate. For this purpose, 10,000 samples were collected from the simulation generated by
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the tuned MPC. In this case, the input would be the three stepped future references and the
alpha quantity representing the three-phase voltage quantities. The output is the control’s
effort on the plant is also recorded as the relationship between the input and output will be
mapped by the controller when training.

To optimize the SVM training, the error and THD landscape was created to see what
combination of parameters synthesized the best controller. Figure 3.5 shows the THD
magnitude vs SVM parameters. The figure also shows the magnitude of absolute error as
the parameters swept using a color gradient. As seen in the graph, the best combination of

parameters lies near 25 kernel scale.
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Figure 3.5: THD and error versus SVM parameters.



22

RBFSVM output
T

Voltage (V)

time(s)

Figure 3.6: RBFSVM-MPC outputs and reference.

Using the parameters obtained from figure 3.5 the RBF-SVM-MPC was
synthesized. This control needed to perform like the MPC with the same input being three
future stepped references and the inverter voltage measurement. Figure 3.6 shows the
control’s response versus the MPC’s response overlapped. The error between the training
output and the RBF-SVM-MPC output was observed to be less than 0.01V. Figure 3.7
shows the absolute error between RBF-SVM-MPC’s prediction and MPC’s prediction seen

in figure 3.6.
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Figure 3.7: RBF-SVM-MPC error tracking.

The RBF-SVM-MPC control loop was very similar to the MPC’s with the only
difference being the control getting replaced by a set of operations that perform the kernel
trick on the input and implement the prediction. Normalization and denormalization is also

present within the block since the trained control needs data in the same shape that it was

trained with.
o
>

Figure 3.8: RBF-SVM-MPC controller block.
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The ANN-MPC was trained using the same spread and hidden units to compare the
performance of both machine-learning based controllers. Having the same number of
hidden units will also make it easier to compare computational loading of controllers.
Figure 3.9 shows the ANN controller as implemented on Simulink. Figure 3.10 shows the

training performance versus epochs that resulted in the controller used in this paper.

2-1

k+h

z1
> z-83°-r

v_ref

Radial Basis Network

Figure 3.9: ANN Simulink model.
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Figure 3.10: ANN training.

The MAE between the training data and the network’s output was observed to be

at 0.01.

6 210% Error for ANN and training data
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error
©
T
|

Figure 3.11: ANN training data error.
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This performance only shows how good the models are at fitting the training data not
how the model reacts as a control in an actual control loop. For this the controls were

simulated using the inverter model seen in previous chapters.

3.2 Simulation Results

For comparing performance of the three controls, simulations with varying load
and model parameters were performed while measuring error and total harmonic distortion.
The load was changed from the trained 47Q linear load to a lower 32Q linear load. A
sudden change in load was also performed to see how good the controls are at tracking.
The controls’ response to a nonlinear load like those present in computer power supplies
and other modern loads is also tested. Lastly, a change in model parameters such as the

inductor and capacitor values were done to test the controls’ generality.

3.2.1 Steady-State Linear Load

The three controllers were simulated using the same 47 Ohm impedance used during
design and training and a 32 Ohm impedance to see the effects of a load change on the
control loops seen in figures 3.2, 3.8, and 3.9. The following figure shows the harmonics
components up to 6 kHz for all three controls. The magnitude is displayed in logarithmic

scale to show as much of the harmonics as possible.
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The error tracking was also plotted using the same data and the MAE (Mean

Absolute Error) was calculated to assess performance and compare. Figure 3.13 below

plots the absolute error over the span of 300 milliseconds at steady state operation. The

resulting MAE values for the controllers being shown in figure 3.17.
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Figure 3.13: Error tracking at 47 Ohms.

Next the load impedance was changed to 32 Ohms to observe the control’s response
to loads that differ from the training data. Data from the simulation was extracted and the
THD was then calculated. Figure 3.12 shows the harmonics for this scenario and figures

3.16 shows the THD values.
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Figure 3.14: inverter THD at 32 Ohms load.

The absolute tracking error from figure 3.13 was used to calculate the MAE and

was recorded for comparison.
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Figures 3.16 and 17 display the THD and tracking error of the three controllers for
comparison purposes. For the baseline load, the MPC outperforms the machine learning
based controllers, but all controllers fall below 1% THD. As per IEEE 519, the THD
recommended for grid connected devices must be below 5% [13]. This standard will serve
as an acceptance threshold during this thesis; if a control is above this threshold, it can be

said that it is not acceptable.

Total Harmonic Distortion (%)

I data for 47-Ohm load
-data for 32-Ohm load

01

ANN-MPC MPC SVM-MPC

Figure 3.16: Simulated THD performance with a linear load.
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Figure 3.17: Simulated tracking error with a resistive load

3.2.2 Dynamic Loads

For the change in load experiment, a three-phase breaker was set up to close at 200
milliseconds during the simulation. A change in current should then be seen due to the
lower load resistance. The control’s response to this change was collected and plotted.

Figure 3.18 shows the Simulink model used for this simulation.
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The following figures show the load switch in a 200-millisecond window.
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Figure 3.21: ANN performance during a sudden load switch.

Where the switch in load occurs at 0.2 seconds a sudden increase in current is seen

as expected. The performance of all controllers doesn’t change much, which is a good sign
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that the controllers can operate during different load conditions. This is also a good

indication that the machine learning controllers behave like the MPC.

3.2.3 Steady-state Nonlinear Load

For the nonlinear load experiment, a three-phase switch with an RLC network was
used to act as a nonlinear load. With the input signal shut-off the free-wheeling protection
diodes acted as a three-phase rectifier. Paired with a capacitor and inductor to maintain
power factor on the resistive load. Figure 3.18 shows the Simulink model that would

replicate this.
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Figure 3.22: Nonlinear load Simulink model.

The three controllers were placed in the control loop for the model in figure 3.18.
A portion of the steady-state waveforms were plotted like the linear load scenarios. The

following figures show the waveforms plotted for the three controllers.
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Figure 3.24: SVM performance to nonlinear load.
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Figure 3.25: ANN performance to nonlinear load.

The total harmonic distortion and tracking error was calculated from the data in the
previous figures for comparison purposes. Figure 3.26 displays the harmonic components
up to 6kHz for all three controllers. The THD for the controllers in this simulation was

recorded.
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The tracking error plotted in figure 3.27 and the MAE is recorded and a comparison

is plotted in figure 3.28 and figure 3.29.
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Figure 3.27: Controllers’ tracking error for nonlinear loading.
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From figures 3.28 and 3.29, the ANN-MPC’s performance is better in terms of

THD and tracking error.
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Figure 3.28: Controllers’ tracking error for nonlinear loading.
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Figure 3.29: Controllers’ tracking error for nonlinear loading.
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Chapter 4 : Experimental Results

In this section, the controllers simulated will be programmed into the dSPACE
MicroLabBox and placed in a three-phase inverter control loop. The inverter will be tested
in as the previous chapter. The performance of the inverter was expected to be close to the

simulations for each control model.

4.1 Testing overview and set-up

The Simulink models that were created in the previous chapter were programmed
into the MicroLabBox to be tested. Computational loading on the MicroLabBox was
measured for each control model for comparison purposes. The hardware set-up used
during testing is seen in figure 4.1. the load would change depending on the test from

resistive to nonlinear.
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Figure 4.1: Three-phase inverter set-up.

4.2 Testing Scenarios

4.2.1 Static Loads

The first test scenario consisted of capturing the performance of each model under
a resistive and nonlinear load. The THD and MAE were calculated for each load type. A
resistive load of 47-Q was used to acquire the training samples for the machine learning
models, this will be referred to as the training load. All models were tested under the
training load and a 32-Q resistive load; this tested the machine-learning models’
performance at different loads.

Figure 4.2 shows the three-phase voltage output and the ten highest harmonics up

to the 13" harmonic while driving a 47-ohm load.



42

+ Timebase | I Tiigger @ Display | # C El Measure | @ Math | 1= Analysis X Utiies | @ Support

Amplitude |

ey 58514
00 Hz | 2222403V, / M\
27.21my| [\ T\ f
86.60 my| I £ 4 | A
| z / f /
315 my| i _;0.0“‘ o | TH for /
a4 1 f i

1223 mv| 20V

e 1999 H ] f \ ] \
10: 66000 Hz 1223 mV| =1 \ ! Fj {
/ Vot Mo |
/ Wil Wy \
1BY 2114 I I i
! Voo

5V
SR T o W W [
M an 050 Lo P 0 00 .0
- 99 T - N0 4% Pee Pt e 09 o
- : - - .
- \ X
/ \ / \ !
&/ \ \ \
/ \ / /i
/ \ \ / \
5V A b3 ¥
/ \
v W/
-10v
Hz 160 Hz 320 Hz 480 Hz 640 Hz BOOHz

Measure P1:frea(C11 P2:max(CT) PImin(C1} P4:pkok(C1) P5:pkpk(C2) _PB:pkpk(C31 PT:rms(C4) P8:pkpk(C41
value 59980581 Hz 3do0v 341V v 67.507 v 6826V 5001 mA 1492 A
tus L Ll - 7 v 4 4 L4 L
3 : 1 [ Timebase 0 ms| Trigger ()08
17.6 Vid i 200 ms/div] Stop 860 mA
o] 455 msldi ; ; £ / 5 MS/s|Edge Positive

TELEDYNE LECROY 4/3/2023 5:39:10 PM

Figure 4.2: MPC’s performance with a 47Q load

As can be seen in figure 4.2, the MPC performs well with the training load. The
tracking error was also captured and shown in figure 4.3. As expected, the MPC can track
the reference which results in the three-phase output voltage. These samples were exported
and the THD and MAE were calculated for comparison. The values calculated will be

compared with the other control models.



43

B Measure | @ Math X Utiliies | @ Support
\ / \ \ \ \ A
Y / \ Y / Vo iy 3 %ol N ol) \ \ / 3
X 7 i i X N7
A" A\ s "/ . L% N/ N/ \/ N \
. ~ ~ ~ -~ Varef] ~ ~ ~ -
X \ N\ \ [\ £\ A A [\ ‘il 4 A
f \ \ Y 7 Y i ¥ 3 Y i Fi \
/ \ Fiy f \ / \ / \ \ / \
/ \ \ \ / \ \ \ \ X X / J \
\ \ \ \
A / \ \ i \ / / / \ \
= i b ol \ A / \ / \ 1 \
/ T 7 7 LT T / Vi 7  J 7
\/ \/ N/ \ \ \/ \/ \/ o \/ L5 ]
i
Error
=)
Measure P1:frealCal P2max(C1) PIMN(CT P4:Dkok(C1l P5:pkok(C2 PEDkDK(CI PT.ms(FT) PE:koK(CA
value 59.99484 Hz 5y 3TV 924V 66.155 V 68.18 V 178V 68.740V
L 4 04 v 4 4 4 v
f 400 ps| (Trigger ER11AS)
200msidv|Stop 2.0V
* |s00ks 25 Msis|Edge Posiive

TELEDYNE LECROY 4/10/2023 5:22:10 PM

Figure 4.3: MPC’s error tracking with a 47-ohm load.

Next, the ANN-MPC model was loaded onto the MicroLabBox, and the procedure
was repeated. Figure 4.4 shows the ANN-MPC output the three-phase voltage waveform

successfully; the ten highest harmonics can also be seen.
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Figure 4.4: ANN controller’s performance with a 47ohm load.

The tracking error was obtained from this controller as well and the MAE and THD
were calculated for comparison. Figure 4.5 shows the tracking error for the ANN based
controller. From the captures taken one can see that the ANN can output a clean waveform

just like the MPC. The tracking error can also be seen to be lower than the MPC.
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Figure 4.5: ANN controller’s error tracking with a 47-ohm load.

Finally, the SVM based controller was tested in the same manner and the
performance captured in figures 4.6 and 4.7. As seen in chapter 3, the SVM-MPC can track

the error comparably to the MPC and ANN-MPC. In fact, like the ANN, the tracking error

1s seen to be lower than the MPC.



Frequency
sl 8000 Mz | 2178198 V. /
2 30000 Hz 256 .54 mV| f 3 ¥ i
3 41999H: 9404V /oA £ b
A, 18000 45,50 mV 25y p¥E foet) A /
5 14499 Hz 4103 mV| AS i ¥
6....53899Hz  3933mV | f {
7 8499Hz  36.00mV ! \ | 1 ¥
8 12000Hz  3525mV | \ { \ |
8. 2489Hz | 2538mV 20y @ { | | 1 i
10 77999 Hz 2322 mV | | { \‘
f {
/ | | W ou
oy ' ¥y
1BV 1 v t
i i
e
\ VoS
\ / \ /
10V {
5V d
WE oot W 00 oA 71
PR B o a S %3 AL i 40 i
\/
BV 862
-10Vv
Hz 160 Hz 320Hz 480 Hz 640 Hz 800 Hz 2
Measure _Piifrea(C) P2max(C1) P3minC1) Pd:pkok(C1] c2)
value 50.064209 Hz B3IV 334V 8669V 65.200 V
status L L b L4 4
17.6 V/div|
455 msfd

TELEDYNE LECROY

4/3/2023 6:51:32 PM

&

Ercon
Measure P1:frea(C4) P2:max(C1) P3:min(C1) P4:pkpk(C1) P6:pkpk(CH P8:pkoki(C4
value 60.04554 Hz 338V -337V 67.52V 6665V 66.692V
status e L4 b4 b

@ F1 o (cica)!
1.00 Vidiv
20.0 msidiv§

4/10/2023 5:07-54 PM

Figure 4.7: SVM error tracking with 47-ohms.
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Next, the load was changed to a static 32-ohm load to observe performance at
different load conditions than what the machine-learning based controls were trained at.
The controls’ performance was recorded, and metrics were calculated. An oscilloscope
capture showing the MPC’s performance and harmonics of 60 Hz can be seen in figure 4.8
along with the tracking error in figure 4.9. From the figures, one can see that the MPC can

continue to track the reference albeit with lower amplitude in the fundamental frequency.
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Figure 4.8: MPC’s performance with a 32-ohm load.
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The ANN-MPC’s performance was then captured as seen in figure 4.10. The

fundamental frequency also shows a decrease in amplitude like the MPC which implies a

higher THD. Interestingly, the tracking error shown in figure 4.11 is lower for the ANN-

MPC than that of the MPC like in the 47-Ohm case. This demonstrates a greater generality

on the ANN based controller than the MPC when the load and other parameters change on

the plant model.
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Figure 4.11: ANN control error tracking with a 32-ohm load.
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Lastly, the SVM-MPC’s performance and error can be seen in figures 4.12 and 4.13
respectively. As with the two other models, the THD is higher when not implemented on
the training load. The error is also higher for the 32-Ohm case, but it is still lower than the
other models. As with the ANN-MPC case, the lower tracking error may be attributed to a
faster actuation time. In other words, since the ML-based models are expected to lower

computation time due to the offline optimization, they’re able to exert the control effort

faster and thus tracking the reference better.
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Figure 4.12: SVM-MPC performance with a 32-ohm load.
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Figure 4.13: SVM-MPC error tracking with a 32-ohm load.

The quantities obtained from the experiments above are compiled in figures 4.14
and 4.15 for comparison. As can be seen from the figures, the three controllers had similar
performance, but the reference tracking is better for the ML-based control models. The
computation time for each controller is explored in a later section. The THD is expected to

be higher for the ML-based controllers since these are trained using MPC samples.
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Figure 4.14 Control THD at different resistive loads.
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Figure 4.15 Control MAE at different resistive loads.
Further comparison will be seen at the end of this chapter including the data from

all the other tests.

4.2.2 Dynamic load test

The next test set involved changing the load and recording the controls’
performance during the change. Ideally, the control being tested should maintain the
voltage as close as possible to the reference. During the change in load there should be a
clear change in current to reflect the load. Figure 4.16 shows the inverter’s voltage being

controlled by the MPC during the load change.
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Figure 4.16: MPC performance during load change.

As expected, the current increases when the load changes from 47-Ohms to 32-

Ohms but the voltage remains at its intended value.
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Figure 4.17: ANN-MPC control performance during load change

Figure 4.17 shows the ANN based controller during the same test. The control
performed similarly to the MPC. To finish this test, the SVM based controller was tested

and recorded as shown in figure 4.18.
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Figure 4.18: SVM-MPC control performance during load change.

In conclusion, the controls remained stable during the load change and there was

minimal change to the voltage during the switch. Since all models showed similar

performance, this hints to a fast response time when faced with sudden changes. This was

expected for the MPC since this is one of its features. The ML-based controls demonstrated

the same performance which was a sign that they inherited these important features from

the MPC.

4.2.3 Nonlinear loading

Modern loads like consumer electronics draw nonlinear current, it’s important for the

inverter’s voltage to maintain stability during these situations. Testing the controllers using

a nonlinear load will show their performance in terms of voltage THD. The inverter must

remain under the stated five percent THD for this test despite the non-linear load.
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To continue the sequence of testing used in previous sections, the MPC model was
tested using the set-up shown in figure 4.19 which is equivalent to the model in chapter 3

consisting of a three-phase rectifier.

LYY Y e Phase-A
+
—= A A A
E
Q N
=] - ——e ... Y _Phase-B
~ +
P

" *UMAS——Phase-C
Figure 4.19: Nonlinear load experimental set-up.

The scope capture showing the harmonic magnitude for the MPC nonlinear load
test is shown in figure 4.20. These magnitudes will be used to calculate THD and compared

to the other controller models.
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Figure 4.20: MPC performance with a nonlinear load.

The control’s ability to track the error between measured value and the reference
assigned is also an important measure to compare. Figure 4.21 shows this error tracking
for the MPC’s voltage output with a nonlinear load for a single phase. This quantity will

be compared with the data from the other models.
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Figure 4.21: MPC error tracking with a nonlinear load.

The experiment was repeated for the ANN-MPC model, and the harmonic and error
magnitudes was collected as seen in figure 4.22 and figure 4.23. It’s important to note that
the error is expected to be higher than for a purely resistive load due to the notching caused

by the rectifier commutations.
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Figure 4.23: ANN-MPC reference tracking error with a nonlinear load.
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Similarly, the SVM-MPC model was tested, and scope captures and data were

collected for analysis and comparison. This can be seen in figure 4.24 and figure 4.25.
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Figure 4.24: SVM performance with a nonlinear load.
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Figure 4.25: SVM performance with a nonlinear load.

To finalize the nonlinear testing, the error and THD are compared below. As seen in
previous tests, the THD for all three controllers is similar and higher than in the resistive
load test as expected. None of the control models exceeded the 5% threshold assigned at
the beginning of this paper. The MAE calculated showed a similar trend as with the

resistive load test.
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63



64

Mean Absolute Error

-dala for RCD load

1.8

MAE

ANN-MPC MPC SVM-MPC

Figure 4.27: SVM performance with a nonlinear load.

4.3 Computational Time Comparison

To complete the model’s comparison, a measure of the resources used by the
microcontroller was taken. For this, the turnaround time maximum, mean, and standard
deviation were taken. The idea was that the turnaround time would measure how long it
took the microcontroller to process the data gathered during a sample period. This is done
for all controller models while a static load is connected to it. Figure 4.28 shows the data

collected from the MicroLabBox while the MPC model was loaded.
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Icon Name Maximum Mean Standard Deviation
d Data Store\nRead/Out1 7.08E-06 5.78997E-06 3.61558E-07
[~} Data Store\nRead/Out1 8.4E-07 1.64142E-07 6.57673E-08
| | Timer Task 1/turnaroundTime 1.72E-05 1.2488E-05  7.80078E-07

Figure 4.28: Microcontroller CPU loading with MPC.

Next, the ANN-MPC was loaded in the microcontroller and the run-time data was
collected as seen in figure 4.29. As implied in the previous sections in this chapter, the

turnaround time is expected to be similar since there the other experimental results showed

a like performance.

Icon Name Maximum Mean Standard D.

| | Data Store\nRead/Out1 1.128E-05 1.00187E-05 3.81279€-07
| | Timer Task 1urnaroundTime 1.78E-05 1.6326E-05 6.41615E-07
-] Data Store\nRead/Out1 3.56E-06 2.49229E-06 1.72153€E-07

Figure 4.29: Microcontroller CPU loading with ANN.
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Finally, the data was collected for the SVM-MPC as seen in figure 4.30. Just like
the ANN-MPC, the turnaround time for the SVM-MPC is within a few micro-seconds of
the other two models. The maximum turnaround time for the SVM is lower than the other

two control models which can explain the smaller tracking error.

Icon Name Maximum Mean ~ Standard Deviation
| Data Store\nRead/Out1 1.152E-05 1.03543E-05 4.72954E-07
| Data Store\nRead/Out1 1.18E-05 1.04402E-05 4.77993E-07
| | Timer Task 1/turnaroundTime 1.66E-05 1.49712E-05 8.59751E-07

Figure 4.30: Microcontroller CPU loading with SVM.

Table 4.3 shows the maximum turnaround time measures for all control models.
The maximum time is important because it limits the minimum sample period used. For
this experimental comparison, a sample time of 20 microseconds was used. All control
models had a maximum timer-task period lower than this sample time, so no problems
were encountered during testing. However, the SVM-MPC did show the lowest maximum

turnaround time.

MPC ANN-MPC SVM-MPC

Max turnaround time (pus) | 17.2 17.8 16.6

Table 4.3 turnaround time measurements.



Aside from the implied computation load similarities, these similar turnaround
time measurements confirm that the ML-controls also have the fast response typically

seen on the MPC.
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Chapter 5 : Conclusions and Recommendations for the Future

Research

The machine learning controls explored in this paper offer a viable alternative to
the MPC for a three-phase inverter. The results seen chapter 4 show that the performance
among the controllers is very similar and, in some cases, the MPC is exceeded by a machine
learning model. The machine learning controllers also offer a simpler control model than
MPC, since the MPC uses an online optimization algorithm, and the machine learning
controllers are a tree of math operations. This enables the control to be easily replicated
into a microcontroller that can perform these operations as demonstrated in the simulation
models in chapter 3. The ML-based controllers also showed a quick response time when
faced with sudden load changes which is typically seen in the MPC. In fact, the comparison
showed that the ML-based control models can track the reference better than the MPC
which can be attributed to the lower turnaround time observed.

These models might be able to offer an alternative to MPC applications with large
prediction horizon needs for comparable performance or lower CPU resource cost. Future
works might include the exploration of machine learning based controllers in other

applications or modelling other controller types.
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