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Advisor: Dr. Jianwu Zeng.  

In recent years, the study of three-phase inverter controls has become important 

with the rising use of renewable energy sources (RES) in the form of distribution 

generation (DG). Many control types have been developed for DG inverters and others 

were traditional controls for the generation of the main grid power that were adapted for a 

system with less inertia. Among these controls is the model predictive control (MPC) 

which allows for a fast transient response and good reference tracking. One disadvantage 

of the MPC is that it does this prediction and optimization online which can limit the 

applications due to computational loading. Although there are some solutions to this 

problem in the form of a finite control-set MPC (FCS-MPC) which takes advantage of the 

only two states of a switch mode converter to reduce complexity, this still takes the form 

of a nonlinear online optimization problem. 

However, compared with the continuous control set (CCS) MPC, using the FCS-

MPC may result in poor performance due to the degradation of the switching frequency. 

The high computation of CCS-MPC prevents it from being implemented in the resources-

limited digital signal processor (DSP). To reduce the computational burden, machine 

learning (ML) methods such as artificial neural networks (ANN) are used for learning the 

input and output of the MPC. This thesis compares the ANN-MPC, and support vector 

machine (SVM) based MPC in a three-phase inverter. A comparison of total harmonic 

distortion (THD), and reference tracking during different scenarios will be provided. 
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Chapter 1 : Introduction 

This chapter will view techniques that can be used in the control loop of three phase 

inverters. Among these controls is the model predictive control (MPC) which will be a 

focus in the thesis.  

1.1 Background 

Distribution generation (DG) systems are becoming more popular because of price fall 

in renewable energy components [1] such as solar power and wind turbine systems. Recent 

events such as the Texas grid failure of 2021 [2] displayed reliability issues in the main 

electric grid that could be remedied by back up DG systems at the distribution level. The 

problem with harvesting renewable energy sources (RES) is that the resulting electric 

power is in a form incompatible with the mains grid which is transported as alternating 

current at 60Hz. RES such as solar array produces voltage and wind power produces DC 

and AC voltage at variable frequencies, respectively; the inverter plays an essential role in 

DG integration. The rise in RES integration in recent years has made the study of inverter 

control increase in importance. Due to this, traditional control schemes used in industry are 

being implemented in power electronics and new models including machine learning 

techniques are being researched to meet the demand. This thesis focuses on machine 

learning based MPC as a possible alternative to the conventional MPC for this application.  

  1.2. Control Schemes for Power Converters 
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1.2.1 Modelling the System 

Before the control schemes are discussed, a proper model of a power converter 

needs to be established, a three-phase voltage source inverter will be used and discussed in 

this paper. A popular way to represent a system is the state-space averaging (SSA) model 

since it uses the average state of the transistors in switch-mode power converters that are 

used for pulse-width modulating (PWM). The process of describing a power converter 

using the SSA method begins by using electrical principles to obtain the differential 

equations to describe the system.  

 

Figure 1.1: Half-bridge voltage-source inverter. 

For a three-phase inverter as shown in Figure 1.1, each phase is ideally symmetrical 

with respect to structure and component values. This is because we want the phases to be 

balanced so minimal current is carried in the neutral conductor. Because of this symmetry, 

a single phase can describe the rest of the system by shifting the phase angle. The 

differential equations can be used to describe the state-space representation of the inverter 
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which can be used to synthesize controllers.  Equation 1.1 shows the state-space model for 

a single-phase inverter.  
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where x = [iL, vc] is the monitored states and u is the duty cycle for the PWM module. Since 

the inverter consists of three phases, the PWM will be shifted by 120 degrees for the 

remaining two phases.  

1.2.2 Rotational Reference Frames  

The inverter outputs three phases that are separated by 120 degrees as necessary for 

a three-phase balanced system. These three output signals can be converted into simpler 

signals by using the rotational reference frames. Two popular frames transformations are 

the Clarke (α-β) and the direct-quadrature transformation. 

 

Figure 1.2: Three-phase voltages and its Clarke transform representation. 
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The Clarke transform represents a three-phase system which is the standard for the 

electric power distribution industry in two orthogonal components. This greatly reduces 

the complexity of the system as it only needs one phase and its 90-degree phase shift 

representation. When using these signals for control purposes, the complexity of the system 

is reduced by changing the need from 3 controllers to 2 with a 90-degree phase delay in 

each one.  

 

Figure 1.3: alpha-beta and DQZ transform. 
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The DQ transform is a combination of two transforms, one of which is the Clarke 

transform. The other is the Park transform which rotates with the α-β stational frame to 

make them constant. This transform is particularly useful since it simplifies the control 

synthesis from a time varying output signal to a constant signal that is easier to track by 

controllers.  

1.2.3 PID Control 

 A common control is the Proportional-Integral-Derivative (PID) controller which 

utilizes three components to alter the error between the reference and the sampled system’s 

output.  

 

Figure 1.4:  PID control structure. 

In power converters, the PID is mostly used as a Proportional-Integral (PI) control 

by setting the derivative component to zero on the structure shown in figure 1.4. The 
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common converter control consists of dual control loops: the outer loop is for tracking and 

maintaining the voltage at a certain level while limiting the current references, and the inner 

loop is for tracking the reference current provided by the outer loop.  Digital tuning 

software such as MATLAB has made tuning PI controllers easy and readily available 

digital signal processors (DSP) modules make programming the controllers accessible.  

 

 

Figure 1.5: Voltage and current control loops. 

The PI control can be paired with the rotational reference frame since the DQ 

components are constant, which further simplifies the design of the controller.  The control 

output would then be used to control the duty cycle of switch mode converters like the 

inverter seen in figure 1.1.  

1.3 A literature Review of the MPC  

1.3.1 The Model Predictive Control  

MPC has become a popular method for power electronics with the increasing 

computation power of micro controllers and DSPs. MPCs work by using the system’s 

transfer function and state variables to optimize a cost function across several future sample 
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steps. This optimization predicts the best control effort over the sample steps considered. 

The number of steps is called the control horizon and a longer predict horizon result in 

more computations to be done per sample period. 

 

Figure 1.6 MPC Control loop with a three-step control horizon.  

The MPC can use the alpha-beta reference frame for tracking the plant’s output. Figure 

1.7 illustrates the MPC’s online optimization. 
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Figure 1.7: MPC online optimization in discrete time. 

MPC has several advantages such as the easy inclusion of nonlinearities and 

constraints due to the online calculations performed every sample step which leads to good 

performance in three-phase inverters [4]-[6]. There are two MPC types, one is continuous 

control set (CCS) MPC and the other is finite control set (FCS) MPC [7].  Unlike CCS-

MPC in which the switch status is varied in each period, the FCS-MPC only considers a 

finite set of states and switches status within entire sampling period is either on or off, 

which greatly reduces prediction states. However, the CCS-MPC has better performance 

than the FCS-MPC. 

1.3.2 Cost Function and Optimization 

Various MPC algorithms propose different cost functions to obtain the control law 

[4].  The cost function typically includes the differences between the reference signal and 
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the sampled output (also called the error), and the control effort which is the rate of change 

of the input control output over the control horizon; they are organized with different 

weight. Along with constraints to inputs, outputs, and horizons, the tuning of an MPC 

consists of parameter optimization. The traditional objective can be expressed as follows: 

min 𝐽 = ∑  [𝑤 · |𝑒(𝑘 + 𝑗)|ଶ + 𝑤௨ · |Δ𝑢(𝑘 + 𝑖 − 1)|ଶ]
ୀଵ      

 (1.4) 

 

where the error term |𝑒(𝑘 + 𝑗)| can be considered as the difference between the reference 

and the predicted values of the output; Δ𝑢(𝑘 + 𝑖 − 1) term indicates the rate of change of 

the control input across the control horizon. It should be noted that the rate change of the 

control actuation can be subject to constraints which are considered when optimizing the 

problem. These constraints can be used to limit the control’s output extrema and rate of 

change per sample interval. 

1.3.3 Disadvantages 

One of the main disadvantages of the MPC is the dependence on the system model in 

which there is load and parameter uncertainty. Other phenomena like faults, quick changes 

in loading, or nonlinear loading could affect the performance since the state predictions are 

based on a pre-configured plant model. 

Another disadvantage is the high computational cost due to an online optimization 

problem within every sampling interval.  These challenges are the main motivation for 

exploring and comparing other controls to the MPC.  
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Chapter 2 : Literature Review of Machine Learning Based 

MPC 

This chapter gives a brief introduction to machine learning like artificial neural 

networks (ANNs) and support vector machines (SVMs) which use data from a controller 

to perform a curve fit that can be used in a control loop for a three-phase inverter. The 

controller’s optimization occurs offline in contrast to the online optimization of the MPC. 

This thesis explores if offline optimization can achieve better performance than a online 

MPC when a machine learning based MPC is used.  

2.1 Machine Learning Based MPC 

Two machine learning techniques, the ε-SVM and the Radial Basis Function-Artificial 

neural network (RBF-ANN) are the methods used and compared in this thesis. SVM has 

been found to be a more efficient method [9] in certain applications which is essential when 

working within the limits of widely used DSPs. The following sections will explore these 

two methods and their operation.  

2.1.1 Structure 

The RBF-ANN is an artificial neural network which is trained with an activation 

function that takes the form of a radial basis or gaussian curve. The ANN training algorithm 

uses gradient descent which attempts to find a minimum in error between the model’s 

output and the training output values; this would produce a response that models the 
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training input and output [9]. ANN-MPC has historically been the method of choice when 

considering power electronics machine learning based control models [10]-[12].  

 

Figure 2.1: ANN architecture. 

The figure above shows how the inputs interact with the ANN parameters to sum 

up to an output. The relationship between the input and output can be expressed by the 

following:   

    𝑌 =   ∑ 𝑤 ∙ 𝜙(𝑥, 𝑐, 𝜎) + 𝑤

              

 (2.1)   

The relationship above shows how the output is a sum of weighted inputs plus a bias. 

The weights are part of the activation function, and they depend on parameters 

corresponding to the nature of the activation function. As an example, a radial basis 

function (RBF) will have a spread and a center or mean associated to it. The mean and 
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spread can be derived from the dataset collected for training. It’s important to note that 

while ANNs are very good at imitating systems they are limited by the samples given, i.e., 

an ANN would not do well for new samples that was not learned. 

 

The SVM gets its name from the support vectors that make up its performance. 

These support vectors interact with the input and add together to create the output that 

best fits the trained output. SVMs have been traditionally used in classification and 

regression problems such as face recognition. As a control system, the SVM is used as a 

regression tool that fits the relationship between the input and output in a higher 

dimensional space. The ε-SVM mapping function describes a hyperplane that separates 

the data in a higher dimensional space with a plane. 𝑢  = 𝑤் ∙ 𝜑(X୩) + 𝑏                          

 (2.2) 

where wT represents the normal vector to the hyperplane, φ(Xk) indicates the SVM’s kernel 

or activation function, and b is the bias or offset.  Figure 2.2 shows the linear relationship 

in the higher dimensional space which can easily separate the points.  The linear separation 

in high dimension is equivalent to nonlinear separation in low dimension.  
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Figure 2.2: SVM hyperplane 

This separated data can then be used to create an error margin using a distance called 

the epsilon margin or ε-tube. The samples inside the tube are said to have no error while 

the samples outside are called the support vectors. A tube of zero distance is called a hard 

margin SVM and it can cause problems since it regards all samples as erroneous, and the 

optimization can cause overfitting that losses generalization.  For this reason, in this thesis, 

a soft margin SVM will be used meaning that there will be a greater than zero epsilon value 

leading to a reduced number of support vectors along with computational cost, and greater 

generalization.  



14 

 

Figure 2.3: Epsilon tube. 

Given the that the error samples are defined as those lying outside the ε-margin, 

one can use this margin and the orientation of the hyperplane to optimize the performance 

of the SVM. This takes the form of:  

Min
ଵ

ଶ
𝑤்𝑤 + 𝛾 ∑ (ξ୩ + 𝜉

∗)
ୀଵ     (2.3) 

𝑠. 𝑡. ቐ

𝑢
∗ − 𝑤 · 𝜑(𝑋) − 𝑏 ≤  𝜉

∗ + 𝜀 

𝑤 · 𝜑(𝑋) + 𝑏 − 𝑢 ≤  𝜉
∗ + 𝜀

∀𝑘:  𝜉 , 𝜉
∗ ≥ 0

     (2.4) 

Positive Lagrange multipliers are used in formulating the optimization problem and 

introducing variables 𝜉 , k = 1,2, …, n allows us to flex the error margin for problems like 

controls [8]. The non-zero terms 𝜉 and 𝜉
∗ then become support vectors in the regression 

model which are used to program a controller. 
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2.1.2 Data Preprocessing 

Training a neural network can vary on efficiency depending on the data it is given. 

As stated in the previous section, some parameters depend on the activation function or 

kernel which can be derived from the training set. Normalizing the input and output is a 

simple yet effective way of improving performance in training. Because inputs could be of 

different scales such as voltage and current, normalizing the input prevents the voltage 

from having a greater influence on the output since in general it will be a larger value. 

Proper format is another important factor in preparing data since the input should be in a 

format that represents the model and can be fed into the training vector. The output vector 

should also be in a format that can be compared to an ideal output for analysis. 

2.1.3 Training and Fitting Performance. 

Training data should include a complete scope of the inputs that are possible for the 

system to encounter. SVM controls can be more general if the soft margin SVM mentioned 

is employed.  This only happens if there is no overfitting during training.  Overfitting 

occurs when the SVM is forced to fit a curve with strict constraints and an excessive 

number of hidden units. A balance must be reached during training to avoid getting a 

system with very large amounts of hidden units despite the low error. Figure 2.1.5 below 

shows how a sinusoidal curve can fit a data set with a seemingly linear trend. Both line and 

the sinusoid shown could have similar errors when fitting the curve.  A low number of 

support vectors is also desirable because it would reduce the resources needed for the 

application.   
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Figure 2.4: Overfitting of the SVM. 

To compare the effectiveness of the methods, controllers will be compared in different 

aspects such as total harmonic distortion (THD) in the output, dynamic loading, and 

computational loading [14]. The Machine learning controllers are expected to perform 

similarly to the MPC but using less computational resources.  
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Chapter 3 : Simulations 

In this chapter, simulation studies and results will be described. The methods and 

parameters used for the simulations were picked to model the three-phase inverter 

described in chapter 1. For this thesis, MATLAB/Simulink environment was used to model 

and design controls and later as a programming tool for the controller used during testing. 

The results from the simulations are used to set expectations for the controllers performing 

on hardware.  

3.1 Simulation Studies 

The first step is to use a script including the inverter parameters and state-space 

average model to design the MPC which will be served as the reference controller in this 

thesis.  Using MATLAB’s “mpcdesigner”, an MPC Simulink model was created with small 

prediction and control horizon to minimize computational loading. Figure 3.1 shows MPC 

designer while creating the controller and testing a sinusoidal response.   
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Figure 3.1: MPC design tool. 

A Simulink model was then created along with the plant to output the voltage 

needed to simulate the control loop. The sampling time of the control was set to be the 

same as the switching period which was 20μs. Similarly, the L-C filter and power supply 

were set the same as the nominal values for the inverter. Figure 3.2 shows the inverter 

control loop used for estimating the MPC’s performance.  
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Figure 3.2: Inverter and MPC control loop. 

The THD, power factor, and reference tracking were observed in the simulation 

using scope tools and were deemed acceptable when the THD was below 5%, pf was close 

to unity, and the reference error was less than one percent. When the MPC has good 

performance, it could then be used to gather data for training the SVM and ANN as 

illustrated in the previous chapter. The following figures show the MPC’s three-phase 

voltage with each reference phase, the THD as measured by a THD block and the phase A 

current under a 47 Ohm load. The error is also shown to be around 1.2V maximum between 

the alpha voltage signal and the reference.  
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Figure 3.3: MPC performance. 

 

Figure 3.4: MPC error tracking. 

As seen in chapter 2, the SVM and ANN require data from the system they are to 

imitate. For this purpose, 10,000 samples were collected from the simulation generated by 
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the tuned MPC. In this case, the input would be the three stepped future references and the 

alpha quantity representing the three-phase voltage quantities. The output is the control’s 

effort on the plant is also recorded as the relationship between the input and output will be 

mapped by the controller when training.  

To optimize the SVM training, the error and THD landscape was created to see what 

combination of parameters synthesized the best controller. Figure 3.5 shows the THD 

magnitude vs SVM parameters. The figure also shows the magnitude of absolute error as 

the parameters swept using a color gradient. As seen in the graph, the best combination of 

parameters lies near 25 kernel scale.  

 

Figure 3.5: THD and error versus SVM parameters. 
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Figure 3.6: RBFSVM-MPC outputs and reference. 

 Using the parameters obtained from figure 3.5 the RBF-SVM-MPC was 

synthesized. This control needed to perform like the MPC with the same input being three 

future stepped references and the inverter voltage measurement. Figure 3.6 shows the 

control’s response versus the MPC’s response overlapped.  The error between the training 

output and the RBF-SVM-MPC output was observed to be less than 0.01V. Figure 3.7 

shows the absolute error between RBF-SVM-MPC’s prediction and MPC’s prediction seen 

in figure 3.6. 
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Figure 3.7: RBF-SVM-MPC error tracking. 

The RBF-SVM-MPC control loop was very similar to the MPC’s with the only 

difference being the control getting replaced by a set of operations that perform the kernel 

trick on the input and implement the prediction. Normalization and denormalization is also 

present within the block since the trained control needs data in the same shape that it was 

trained with.   

 

Figure 3.8: RBF-SVM-MPC controller block. 
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 The ANN-MPC was trained using the same spread and hidden units to compare the 

performance of both machine-learning based controllers. Having the same number of 

hidden units will also make it easier to compare computational loading of controllers.  

Figure 3.9 shows the ANN controller as implemented on Simulink. Figure 3.10 shows the 

training performance versus epochs that resulted in the controller used in this paper. 

 

Figure 3.9:  ANN Simulink model. 
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Figure 3.10: ANN training. 

 The MAE between the training data and the network’s output was observed to be 

at 0.01.  

 

Figure 3.11: ANN training data error. 
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This performance only shows how good the models are at fitting the training data not 

how the model reacts as a control in an actual control loop. For this the controls were 

simulated using the inverter model seen in previous chapters. 

3.2 Simulation Results 

For comparing performance of the three controls, simulations with varying load 

and model parameters were performed while measuring error and total harmonic distortion. 

The load was changed from the trained 47Ω linear load to a lower 32Ω linear load. A 

sudden change in load was also performed to see how good the controls are at tracking. 

The controls’ response to a nonlinear load like those present in computer power supplies 

and other modern loads is also tested. Lastly, a change in model parameters such as the 

inductor and capacitor values were done to test the controls’ generality.  

3.2.1 Steady-State Linear Load  

The three controllers were simulated using the same 47 Ohm impedance used during 

design and training and a 32 Ohm impedance to see the effects of a load change on the 

control loops seen in figures 3.2, 3.8, and 3.9. The following figure shows the harmonics 

components up to 6 kHz for all three controls. The magnitude is displayed in logarithmic 

scale to show as much of the harmonics as possible.   
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Figure 3.12: THD comparison between the three controls. 

The error tracking was also plotted using the same data and the MAE (Mean 

Absolute Error) was calculated to assess performance and compare. Figure 3.13 below 

plots the absolute error over the span of 300 milliseconds at steady state operation. The 

resulting MAE values for the controllers being shown in figure 3.17.  
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Figure 3.13: Error tracking at 47 Ohms. 

Next the load impedance was changed to 32 Ohms to observe the control’s response 

to loads that differ from the training data. Data from the simulation was extracted and the 

THD was then calculated. Figure 3.12 shows the harmonics for this scenario and figures 

3.16 shows the THD values.  
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Figure 3.14: inverter THD at 32 Ohms load. 

The absolute tracking error from figure 3.13 was used to calculate the MAE and 

was recorded for comparison.  

 

Figure 3.15: Controls’ error at R = 32 Ohms 
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Figures 3.16 and 17 display the THD and tracking error of the three controllers for 

comparison purposes. For the baseline load, the MPC outperforms the machine learning 

based controllers, but all controllers fall below 1% THD. As per IEEE 519, the THD 

recommended for grid connected devices must be below 5% [13]. This standard will serve 

as an acceptance threshold during this thesis; if a control is above this threshold, it can be 

said that it is not acceptable.   

 

Figure 3.16: Simulated THD performance with a linear load. 
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Figure 3.17: Simulated tracking error with a resistive load 

3.2.2 Dynamic Loads 

For the change in load experiment, a three-phase breaker was set up to close at 200 

milliseconds during the simulation. A change in current should then be seen due to the 

lower load resistance. The control’s response to this change was collected and plotted. 

Figure 3.18 shows the Simulink model used for this simulation. 
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Figure 3.18: Dynamic load Simulink set-up. 

The following figures show the load switch in a 200-millisecond window.  

 

Figure 3.19: MPC performance during a sudden load switch. 
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Figure 3.20: SVM performance during a sudden load switch. 

 

Figure 3.21: ANN performance during a sudden load switch. 

Where the switch in load occurs at 0.2 seconds a sudden increase in current is seen 

as expected. The performance of all controllers doesn’t change much, which is a good sign 
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that the controllers can operate during different load conditions.  This is also a good 

indication that the machine learning controllers behave like the MPC. 

3.2.3 Steady-state Nonlinear Load 

For the nonlinear load experiment, a three-phase switch with an RLC network was 

used to act as a nonlinear load. With the input signal shut-off the free-wheeling protection 

diodes acted as a three-phase rectifier. Paired with a capacitor and inductor to maintain 

power factor on the resistive load. Figure 3.18 shows the Simulink model that would 

replicate this.  

 

Figure 3.22: Nonlinear load Simulink model. 

The three controllers were placed in the control loop for the model in figure 3.18. 

A portion of the steady-state waveforms were plotted like the linear load scenarios. The 

following figures show the waveforms plotted for the three controllers.  



35 

 

Figure 3.23: MPC performance to nonlinear load. 

 

Figure 3.24:  SVM performance to nonlinear load. 
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Figure 3.25: ANN performance to nonlinear load. 

The total harmonic distortion and tracking error was calculated from the data in the 

previous figures for comparison purposes. Figure 3.26 displays the harmonic components 

up to 6kHz for all three controllers. The THD for the controllers in this simulation was 

recorded.  
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Figure 3.26: Controllers’ THD for nonlinear loading. 

The tracking error plotted in figure 3.27 and the MAE is recorded and a comparison 

is plotted in figure 3.28 and figure 3.29.  

 

Figure 3.27: Controllers’ tracking error for nonlinear loading. 
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From figures 3.28 and 3.29, the ANN-MPC’s performance is better in terms of 

THD and tracking error. 

 

Figure 3.28: Controllers’ tracking error for nonlinear loading. 
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Figure 3.29: Controllers’ tracking error for nonlinear loading. 
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Chapter 4 :  Experimental Results 

In this section, the controllers simulated will be programmed into the dSPACE 

MicroLabBox and placed in a three-phase inverter control loop. The inverter will be tested 

in as the previous chapter. The performance of the inverter was expected to be close to the 

simulations for each control model.   

4.1 Testing overview and set-up 

The Simulink models that were created in the previous chapter were programmed 

into the MicroLabBox to be tested.  Computational loading on the MicroLabBox was 

measured for each control model for comparison purposes. The hardware set-up used 

during testing is seen in figure 4.1. the load would change depending on the test from 

resistive to nonlinear.   
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Figure 4.1: Three-phase inverter set-up. 

4.2 Testing Scenarios 

4.2.1 Static Loads 

The first test scenario consisted of capturing the performance of each model under 

a resistive and nonlinear load. The THD and MAE were calculated for each load type. A 

resistive load of 47-Ω was used to acquire the training samples for the machine learning 

models, this will be referred to as the training load. All models were tested under the 

training load and a 32-Ω resistive load; this tested the machine-learning models’ 

performance at different loads.  

Figure 4.2 shows the three-phase voltage output and the ten highest harmonics up 

to the 13th harmonic while driving a 47-ohm load.  
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Figure 4.2: MPC’s performance with a 47Ω load 

As can be seen in figure 4.2, the MPC performs well with the training load. The 

tracking error was also captured and shown in figure 4.3. As expected, the MPC can track 

the reference which results in the three-phase output voltage. These samples were exported 

and the THD and MAE were calculated for comparison. The values calculated will be 

compared with the other control models. 
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Figure 4.3: MPC’s error tracking with a 47-ohm load. 

Next, the ANN-MPC model was loaded onto the MicroLabBox, and the procedure 

was repeated. Figure 4.4 shows the ANN-MPC output the three-phase voltage waveform 

successfully; the ten highest harmonics can also be seen. 
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Figure 4.4: ANN controller’s performance with a 47ohm load. 

The tracking error was obtained from this controller as well and the MAE and THD 

were calculated for comparison. Figure 4.5 shows the tracking error for the ANN based 

controller. From the captures taken one can see that the ANN can output a clean waveform 

just like the MPC. The tracking error can also be seen to be lower than the MPC. 
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Figure 4.5: ANN controller’s error tracking with a 47-ohm load. 

Finally, the SVM based controller was tested in the same manner and the 

performance captured in figures 4.6 and 4.7. As seen in chapter 3, the SVM-MPC can track 

the error comparably to the MPC and ANN-MPC. In fact, like the ANN, the tracking error 

is seen to be lower than the MPC.  
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Figure 4.6:  SVM-MPC’s performance at 47-ohm. 

 

Figure 4.7: SVM error tracking with 47-ohms. 
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Next, the load was changed to a static 32-ohm load to observe performance at 

different load conditions than what the machine-learning based controls were trained at. 

The controls’ performance was recorded, and metrics were calculated. An oscilloscope 

capture showing the MPC’s performance and harmonics of 60 Hz can be seen in figure 4.8 

along with the tracking error in figure 4.9. From the figures, one can see that the MPC can 

continue to track the reference albeit with lower amplitude in the fundamental frequency.  

 

Figure 4.8: MPC’s performance with a 32-ohm load. 
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Figure 4.9: MPC’s error tracking with a 32-ohm load. 

The ANN-MPC’s performance was then captured as seen in figure 4.10. The 

fundamental frequency also shows a decrease in amplitude like the MPC which implies a 

higher THD.  Interestingly, the tracking error shown in figure 4.11 is lower for the ANN-

MPC than that of the MPC like in the 47-Ohm case. This demonstrates a greater generality 

on the ANN based controller than the MPC when the load and other parameters change on 

the plant model.  
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Figure 4.10: ANN-MPC performance with a 32-ohm load. 

 

Figure 4.11: ANN control error tracking with a 32-ohm load. 
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Lastly, the SVM-MPC’s performance and error can be seen in figures 4.12 and 4.13 

respectively. As with the two other models, the THD is higher when not implemented on 

the training load. The error is also higher for the 32-Ohm case, but it is still lower than the 

other models. As with the ANN-MPC case, the lower tracking error may be attributed to a 

faster actuation time. In other words, since the ML-based models are expected to lower 

computation time due to the offline optimization, they’re able to exert the control effort 

faster and thus tracking the reference better.  

 

Figure 4.12: SVM-MPC performance with a 32-ohm load. 
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Figure 4.13: SVM-MPC error tracking with a 32-ohm load. 

The quantities obtained from the experiments above are compiled in figures 4.14 

and 4.15 for comparison. As can be seen from the figures, the three controllers had similar 

performance, but the reference tracking is better for the ML-based control models. The 

computation time for each controller is explored in a later section. The THD is expected to 

be higher for the ML-based controllers since these are trained using MPC samples.  
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Figure 4.14 Control THD at different resistive loads.  



53 

  

Figure 4.15 Control MAE at different resistive loads. 

 Further comparison will be seen at the end of this chapter including the data from 

all the other tests.  

4.2.2 Dynamic load test 

The next test set involved changing the load and recording the controls’ 

performance during the change. Ideally, the control being tested should maintain the 

voltage as close as possible to the reference. During the change in load there should be a 

clear change in current to reflect the load. Figure 4.16 shows the inverter’s voltage being 

controlled by the MPC during the load change.  
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Figure 4.16: MPC performance during load change. 

As expected, the current increases when the load changes from 47-Ohms to 32-

Ohms but the voltage remains at its intended value.  
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Figure 4.17: ANN-MPC control performance during load change 

Figure 4.17 shows the ANN based controller during the same test. The control 

performed similarly to the MPC. To finish this test, the SVM based controller was tested 

and recorded as shown in figure 4.18. 
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Figure 4.18: SVM-MPC control performance during load change. 

In conclusion, the controls remained stable during the load change and there was 

minimal change to the voltage during the switch. Since all models showed similar 

performance, this hints to a fast response time when faced with sudden changes. This was 

expected for the MPC since this is one of its features. The ML-based controls demonstrated 

the same performance which was a sign that they inherited these important features from 

the MPC.  

4.2.3 Nonlinear loading 

Modern loads like consumer electronics draw nonlinear current, it’s important for the 

inverter’s voltage to maintain stability during these situations. Testing the controllers using 

a nonlinear load will show their performance in terms of voltage THD. The inverter must 

remain under the stated five percent THD for this test despite the non-linear load. 



57 

To continue the sequence of testing used in previous sections, the MPC model was 

tested using the set-up shown in figure 4.19 which is equivalent to the model in chapter 3 

consisting of a three-phase rectifier.  

 

Figure 4.19: Nonlinear load experimental set-up. 

The scope capture showing the harmonic magnitude for the MPC nonlinear load 

test is shown in figure 4.20. These magnitudes will be used to calculate THD and compared 

to the other controller models.   
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Figure 4.20:  MPC performance with a nonlinear load. 

The control’s ability to track the error between measured value and the reference 

assigned is also an important measure to compare. Figure 4.21 shows this error tracking 

for the MPC’s voltage output with a nonlinear load for a single phase. This quantity will 

be compared with the data from the other models. 
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Figure 4.21: MPC error tracking with a nonlinear load. 

The experiment was repeated for the ANN-MPC model, and the harmonic and error 

magnitudes was collected as seen in figure 4.22 and figure 4.23. It’s important to note that 

the error is expected to be higher than for a purely resistive load due to the notching caused 

by the rectifier commutations.  
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Figure 4.22: ANN-MPC control performance with a nonlinear load. 

 

Figure 4.23: ANN-MPC reference tracking error with a nonlinear load. 
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Similarly, the SVM-MPC model was tested, and scope captures and data were 

collected for analysis and comparison. This can be seen in figure 4.24 and figure 4.25.  

 

Figure 4.24: SVM performance with a nonlinear load. 
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Figure 4.25: SVM performance with a nonlinear load. 

To finalize the nonlinear testing, the error and THD are compared below. As seen in 

previous tests, the THD for all three controllers is similar and higher than in the resistive 

load test as expected. None of the control models exceeded the 5% threshold assigned at 

the beginning of this paper. The MAE calculated showed a similar trend as with the 

resistive load test.   
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Figure 4.26: SVM performance with a nonlinear load. 
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Figure 4.27: SVM performance with a nonlinear load. 

 

 

4.3 Computational Time Comparison 

To complete the model’s comparison, a measure of the resources used by the 

microcontroller was taken. For this, the turnaround time maximum, mean, and standard 

deviation were taken. The idea was that the turnaround time would measure how long it 

took the microcontroller to process the data gathered during a sample period. This is done 

for all controller models while a static load is connected to it. Figure 4.28 shows the data 

collected from the MicroLabBox while the MPC model was loaded.  
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Figure 4.28: Microcontroller CPU loading with MPC. 

Next, the ANN-MPC was loaded in the microcontroller and the run-time data was 

collected as seen in figure 4.29.  As implied in the previous sections in this chapter, the 

turnaround time is expected to be similar since there the other experimental results showed 

a like performance.  

 

Figure 4.29: Microcontroller CPU loading with ANN. 
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Finally, the data was collected for the SVM-MPC as seen in figure 4.30. Just like 

the ANN-MPC, the turnaround time for the SVM-MPC is within a few micro-seconds of 

the other two models. The maximum turnaround time for the SVM is lower than the other 

two control models which can explain the smaller tracking error.  

 

Figure 4.30: Microcontroller CPU loading with SVM. 

Table 4.3 shows the maximum turnaround time measures for all control models. 

The maximum time is important because it limits the minimum sample period used. For 

this experimental comparison, a sample time of 20 microseconds was used. All control 

models had a maximum timer-task period lower than this sample time, so no problems 

were encountered during testing. However, the SVM-MPC did show the lowest maximum 

turnaround time. 

 
MPC  ANN-MPC SVM-MPC 

Max turnaround time (μs) 17.2 17.8 16.6 

Table 4.3 turnaround time measurements. 
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Aside from the implied computation load similarities, these similar turnaround 

time measurements confirm that the ML-controls also have the fast response typically 

seen on the MPC.  
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Chapter 5 : Conclusions and Recommendations for the Future 

Research 

The machine learning controls explored in this paper offer a viable alternative to 

the MPC for a three-phase inverter. The results seen chapter 4 show that the performance 

among the controllers is very similar and, in some cases, the MPC is exceeded by a machine 

learning model.  The machine learning controllers also offer a simpler control model than 

MPC, since the MPC uses an online optimization algorithm, and the machine learning 

controllers are a tree of math operations. This enables the control to be easily replicated 

into a microcontroller that can perform these operations as demonstrated in the simulation 

models in chapter 3. The ML-based controllers also showed a quick response time when 

faced with sudden load changes which is typically seen in the MPC. In fact, the comparison 

showed that the ML-based control models can track the reference better than the MPC 

which can be attributed to the lower turnaround time observed.  

These models might be able to offer an alternative to MPC applications with large 

prediction horizon needs for comparable performance or lower CPU resource cost. Future 

works might include the exploration of machine learning based controllers in other 

applications or modelling other controller types.   
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