
Minnesota State University, Mankato Minnesota State University, Mankato

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly

and Creative Works for Minnesota and Creative Works for Minnesota

State University, Mankato State University, Mankato

All Graduate Theses, Dissertations, and Other
Capstone Projects

Graduate Theses, Dissertations, and Other
Capstone Projects

2024

Escape the Planet: Revolutionizing Game Design with Novel OOP Escape the Planet: Revolutionizing Game Design with Novel OOP

Techniques Techniques

Qusai Kamal Fannoun
Minnesota State University, Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Fannoun, Q. K. (2024). Escape the planet: Revolutionizing game design with novel OOP techniques
[Master’s alternative plan paper, Minnesota State University, Mankato]. Cornerstone: A Collection of
Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/
etds/1406/

This APP is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato.

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages

Escape The Planet

By

Qusai Fannoun

A An Alternate Plan Paper Submitted in Partial Fulfillment of the

Requirements for the Degree of

Masters of Science

In

Information Technology

Minnesota State University, Mankato

Mankato, Minnesota

April 2024

April 12th, 2024

Escape the Planet

Qusai Fannoun

This Alternate Plan Paper has been examined and approved by the following members of

the student’s committee.

____ John C Burke ________________

Advisor

___Flint Million____________________

Committee Member

_____________ Naseef Mansoor ______

Committee Member

i

Table of Contents

ABSTRACT ... vi

1. Introduction ..1

1.1. Evolution of Mobile Gaming ..1

1.2. Project Overview ...1

1.3. Technical Innovation ...2

1.4. Problem Statement ..2

2. Literature Review...3

2.1 Game Development History ..3

2.2 Mobile Gaming Market ...3

2.3 Mobile Game Development Challenges ...4

2.4 Game Engines ...5

2.5 Design Patterns ..7

2.6 Design Patterns Used .. 11

2.6.1 Introduction .. 11

2.6.2 Singleton Design Pattern..12

2.6.3 Observer Pattern...14

2.6.4 State Pattern ...15

2.6.5 Strategy Pattern ..17

2.6.6 Command Pattern...18

3. Technical Implementation ..20

3.1 Introduction ...20

3.2 Game Engine Choice ...20

ii

3.3 Icons and Sound Effects ..21

3.3.1 Sound Effects Source ...21

3.3.2 Icons ...22

3.4 Design Pattern Implementation ...22

3.4.1 Singleton ..23

3.4.2 Observer ...26

3.4.3 State Pattern ...29

3.4.4 Strategy Pattern ..39

3.4.5 Command Pattern...44

3.5 Conclusion ...49

4. Software Requirements and Specification ...52

4.1 Introduction ...52

4.2 General Functionalities ...52

4.3 Win Condition Functionalities ..52

4.4 Lose Condition Functionalities ...53

4.5 Interface ...53

4.5.1 Main menu wireframe ..53

4.5.2 HUD Wireframe ...54

4.6 Data and Information ..55

4.6.1 Storage ...55

4.6.2 Data Security ..56

4.7 In-game Purchase ..56

4.8 System Requirements ..56

References ..57

iii

Appendices ...62

Sound Effects ...62

Sounds form Zapsplat ..62

Sounds form Freesound.org ...62

Icons ...62

List of Figures

Figure 1. Mobile gaming revenue statistics for 2022 (Retrieved from Knezovic, 2022). ...4

Figure 2. Concept explanation (retrieved from Unity Technologies, 2022)10

Figure 3. Singleton pattern (Retrieved from Kushwaha, n.d.). ..12

Figure 4. Observer pattern (retrieved from TutorialsPoint: Design Patterns - Observer

Pattern, n.d.) ...14

Figure 5. State pattern (retrieved from Bishop J, 2007) ..15

Figure 6. Strategy pattern (retrieved from TutorialsPoint: Design Patterns - Strategy

Pattern, n.d.) ...17

Figure 7. Command pattern (retrieved from TutorialsPoint: Design Patterns - Command

Pattern, n.d.) ...18

Figure 8. SaveDataManager as a singleton ..24

Figure 9. Making the Singleton class generic to have different types of singletons25

Figure 10. Marking the SaveDataManager Class as Singleton ..26

Figure 11. CollisionHandler script accessing the SaveDataManager script to update the data

..26

Figure 12. UI States ...27

Figure 13. NotifyObservers method ..28

Figure 14. IUIObservable and IUIObserver interfaces with a generic type parameter28

Figure 15. Implementing the observer pattern on the Fuel UI element29

Figure 16. FuelManager ...29

iv

Figure 17. State pattern scripts folder ..31

Figure 18. FuelPadState Abstract Class ...31

Figure 19. ColliosnState Interface ...32

Figure 20. Fuel Pad State Implementation ...32

Figure 21. FuelPad Client Class ..33

Figure 22. FinishState implementing CollisionState ...34

Figure 23. Interface error ...34

Figure 24. Interface new features ...35

Figure 25. FuelPadState Class with a setter method ..35

Figure 26. ActiveFuelPadState Class ...36

Figure 27. FuelPad Script ..37

Figure 28. Attached state to an object ..38

Figure 29. Collision State Implementation ..39

Figure 30. Strategy Pattern Scripts ..41

Figure 31. IcollectibleBehavior interface with a generic parameter41

Figure 32. Some of the Collectable Behaviors ..42

Figure 33. The Collectible Parent Class ..43

Figure 34. Children Collectible Classes...44

Figure 35. Command Pattern Scripts ...45

Figure 36. Command Abstract Class ...45

Figure 37. The Invoker Class ...46

Figure 38. MoveUp Command ..47

Figure 39. RotateLeft Command ...47

Figure 40. InputHandler Client Class ..48

Figure 41. Main menu wireframe ..54

Figure 42. HUD Wireframe ...55

v

List of Tables

Table 1. Unity vs. Unreal ...7

Table 2. Summary of the primary used sources ...8

Table 3. Design patterns type comparison ... 11

vi

Escape the Planet

Qusai Fannoun

AN ALTERNATE PLAN PAPER SUBMITTED IN PARTIAL FULFILLMENT OF

THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

MINNESOTA STATE UNIVERSITY, MANKATO

MANKATO, MINNESOTA

APRIL, 2024

ABSTRACT

Mobile devices are continuously evolving and greater computing power and graphics

capabilities are being introduced every year. As a result, there is an increasing demand for

challenging and engaging mobile games that leverage these advanced features. This project

explores best design practices using the development of Escape the Planet, which is an

intricate maze game for mobile devices in which players navigate using a spaceship that is

trapped in a hostile planet’s maze while avoiding obstacles and enemy attacks. The goal is

to safely guide the spaceship out of the maze without colliding into walls or taking bullets

from defensive cannons. Players can use shields and collect power-ups such as extra fuel

or shield boosters to help their chances but must demonstrate skill, strategy, and patience

to succeed. With multiple maze configurations, escalating difficulty levels, collectible

rewards, and threatening enemies, Escape the Planet aims to provide an exciting,

suspenseful gameplay experience challenging enough to appeal to hardcore gamers. The

inspiration comes from observing the expanding mobile games market revenue, especially

for ports of popular console/PC game franchises once considered too computationally

intensive for mobile. By focusing on efficient coding, complex gameplay elements, and

leveraging newer device capacities, this project utilizes the full potential of modern mobiles

for an engaging, high-quality game worthy of monetization. With sufficient polish and

testing, Escape the Planet will be released on the Android store and hopefully to the iOS

store to contribute an innovative title to the maturing mobile gaming landscape.

1

1. Introduction

1.1. Evolution of Mobile Gaming

 In this modern world, people are witnessing revolutionary technology with

extraordinary performance capability. Among these advancements, mobile phones are a

prime example of innovation that has drastically transformed our daily lives. Nowadays,

smartphones offer greater computing power and advanced graphics capabilities. As a result,

the landscape of mobile gaming has expanded significantly, which attracts a broader

audience. According to the Games - Worldwide | Statista Market Forecast (2023), the game

industry has witnessed significant revenue growth during the past few years. This evolution

has caught the attention of business owners such as Netflix, Ubisoft, and many others. They

are considering mobile platforms as effective marketing and revenue-generating platforms.

1.2. Project Overview

 Escape the Planet is a mobile game app intended to be released for Android

devices, featuring a variety of challenges and entertaining gameplay and will illustrate best

design practices according to industry. The game includes multiple levels with increasing

difficulty. Each level presents a unique maze, offering a new challenge to players. Also, the

players must avoid obstacles that move around, including defensive cannons that shoot at

the spaceship. Colliding with any of these obstacles will destroy the spaceship, which

means the level will be restarted from the beginning. Players can collect power-ups, such

as shields and fuel collectibles, throughout the game to enhance their spaceship’s

capabilities.

2

1.3. Technical Innovation

Escape the Planet utilizes advanced object-oriented programming (OOP)

techniques, ensuring efficient coding and maintainable projects. The game builds on best

practices discussed in the “Design Patterns: Elements of Reusable Object-Oriented

Software,” “Heads First,” and “C# Design Patterns” books. The development process could

not be more enjoyable. Gamma et al. (1994), Freeman et al. (2013), and Bisho’s (2007)

contributions to the field of software development have been incredible sources that

discussed multiple design patterns, such as abstract factory, command, observer, adaptor,

and many more patterns that solve design issues. Which allow the implementation of new

game features to be integrated more efficiently and effectively. The goal of the project is

to explore the best practices that a developer could adopt to improve the code and keep it

maintainable.

In conclusion, Escape the Planet is not just a showcase of technical skill. It is a

demonstration of object-oriented principles that help preserve a program. These techniques

provide a solid structure that allows the developer to extend the project in the future without

going through unreliable code, as it puts up a robust structure that can be modified with no

trouble.

1.4. Problem Statement

 Developing a native mobile app would allow these apps to utilize the full potential

of the mobile device. The general problem is that mobile devices are small computers with

compact components, which provide technical challenges to overcome performance issues

(Ahmad et al., 2017; Arnomo et al., 2021). The specific problem is that the memory in

3

mobile phones is limited, and the CPU could be easily overloaded. Therefore, that could

overheat the devices as they do not contain cooling mechanisms and cannot cool off,

causing the mobile device to perform poorly (Arnomo et al., 2021).

2. Literature Review

2.1 Game Development History

 The video game development history goes back to the 1950s when a physicist called

William Higinbotham created the first video game, a rudimentary tennis game on an

oscilloscope (Early History of Video Games - Wikipedia, n.d.; This Month in Physics

History - October 1958: Physicist Invents First Video Game, 2008). However, video games

started gaining popularity in the 1970s and 1980s, when arcade video games, gaming

consoles, and home computer games were introduced to the general public (Early History

of Video Games - Wikipedia, n.d.).

2.2 Mobile Gaming Market

 Mobile gaming is the dominant sector of the video game industry. Figure 1

highlights the gaming market revenue among different platforms, and by looking at mobile

phones, the dominance is almost 50% of the entire gaming market, reaching almost $93

billion in revenue in 2022 (Knezovic, 2023). The growth of mobile gaming has emerged

from the widespread expansion of mobile phones and the new capabilities they have

introduced (Gapminder Tools, n.d.). The proliferation of smartphones and advancements

in mobile technologies have encouraged developers to develop sophisticated, high-quality

4

games that can be played instantly from users’ pockets wherever and whenever the user

wants.

Figure 1. Mobile gaming revenue statistics for 2022 (Retrieved from Knezovic, 2022).

2.3 Mobile Game Development Challenges

 While the exponential advancement of mobile technologies has brought new

innovations in mobile gaming, developers still face notable challenges and technical

difficulties in building games for smartphones and tablets. A key challenge arises from the

diversity of mobile devices (Szeja, 2023). The wide variety of screen sizes, display

resolutions, aspect ratios, and hardware components like CPU and GPU must be considered

during development. Games must preserve extensive optimization and testing across

various devices to provide a consistent experience. Control limitations of touchscreens

compared to controllers with multiple buttons and keys also pose interface and gameplay

5

design constraints (Arabaine, 2023). Additional challenges arise from battery life

restrictions, as mobile games drain power significantly faster than other apps (Mitchell,

2023). As a result, the developers must carefully balance performance and energy

efficiency.

2.4 Game Engines

 The concept of game engines was first introduced by ID Software in the mid-1990s

when they introduced a first-person shooter game called Doom. ID Software was able to

separate the game’s core components, such as the collision detection system, the audio

system, and the graphics renderer system, into their own independent systems. Developers

have recognized this separation of the game components and allowed them to reuse these

components to create new games with different visuals and mechanics with minimal

changes and in the cheapest way possible (Christopoulou & Xinogalos, 2017; Gregory,

2018).

Gregory (2018) stated that when other developers started using and modifying these

components to create new games, the engine’s creators started charging them for using

these components by making engine licensing agreements to help themselves and start

gaining revenue. Nowadays, game engines are complex and complicated tools with

multiple utilities that provide a solid and robust environment to create game mechanics.

They are the core components or tools for developing a game for different platforms. For

example, if a developer wants to make a character jump or fly, they do not need to work on

the whole functionality and physics of jumping or flying because the game engine already

6

has this functionality created. The developer could use these built-in mechanics and

customize them to make the character perform the desired action.

Multiple companies around the world invest millions in making their own private

game engines, such as EA Games, RockStars, CD Project Red, and many others, to have

their own customized mechanisms and functionalities. These companies do not allow

individuals to use their engines. As a result, developers tend to use some of the free-to-use

game engines, such as Unity, Unreal, Godot, CryEngine, etc. Unity and Unreal are two

game engines that allow developers with a limited budget to explore their talents. To

understand the capability of these engines, some creative and innovative games, such as

Rust, Angry Bird, Temple Run, Fortnite, Batman: Arkham, and many more other games,

have been developed using the powerful tools provided by these engines (Drake, 2023; List

of Unreal Engine Games | Fandom, n.d.).

Despite being free to use, Unity and Unreal engines provide their own unique and

distinct features. Šmíd (2017) compared these two game engines by going in depth about

each engine’s functionality, highlighting the engines’ distinct features and weaknesses.

Christopoulou and Xinogalos (2017) covered a broader range of open-source game engines

that are best used for developing a mobile game. The authors organized their data in a

tabular form, making their comparison easier to follow and understand. However, their

comparison was mainly based on each engine’s documentation and included various

options that could make a choice harder.

7

Table 1 provides a simple comparison between both engines highlighted by

Christopoulou and Xinogalos (2017) and Šmíd (2017).

Table 1. Unity vs. Unreal

Feature Unity Unreal Engine

Programming Language C# C++

Primary Use Indie games, mobile,

VR/AR

AAA titles, high-end

graphics

Graphics Good, with support for

various styles

Excellent, with advanced

visual fidelity

Ease of Use User-friendly with a gentle

learning curve

Slower learning curve but

provides powerful tools

Pricing Model Free tier available,

subscription for Pro

Free to start, royalty after

revenue threshold

Community and Support Large community,

extensive tutorials

Large community,

professional-grade support

Performance Optimized for a wide range

of devices

High performance,

especially in complex

scenes

Supported Platforms Support a broader range of

platforms.

Focused mainly on the big

platforms.

Asset Store Extensive library of assets

and tools

High-quality assets,

especially for graphics

2.5 Design Patterns

 The design patterns implemented in this project are based on the selected books.

Going through these books has provided a general understanding of each implemented

8

pattern in the game. Unfortunately, the examples provided by “Design Patterns: Elements

of Reusable Object-Oriented Software” are illustrated in C++, while “Heads First” is in

Java programming language. However, that does not prevent applying the idea to any

programming language (Unity Technologies, 2022). On the other hand, “C# Design

Pattern” covered the programming language used in Escape the Planet, which helped

understand the implementation in Unity as it was directly relevant to the context.

Even though these three books are considered great resources for understanding

advanced object-oriented techniques, they are not explicitly used for modern game engines

such as Unity. Therefore, several sources, such as tutorials, blogs, and documentation, that

focus on implementing design patterns in real-world applications were checked and

analyzed to find the best practices for implementing each pattern in a game project.

Table 2 provides a summary of the primary key features of each book to help provide

a deeper understanding of each book’s context and traits.

Table 2. Summary of the primary used sources

Book Main Traits Advantages Disadvantages

Gang of

Four

It provides a

foundational

explanation of

design patterns and

covers 23 patterns

divided into

creational,

structural, and

behavioral.

The book examples

are implemented in

It provides a deep

theoretical foundation.

The patterns can be

adapted for game

development

architecture and design,

offering long-term

benefits in

understanding software

design principles.

It does not cover

applications related to

Unity or game

development. Also, the

boos require an effort

to understand the

concepts and the

implementation of the

patterns.

9

C++ programming

language.

Head First

Design

Patterns

It provides an

introductory guide to

design patterns,

using a visually rich

format and an

engaging,

conversational style

to make complex

concepts accessible.

The book examples

are implemented in

Java programming

language.

The book is suitable for

beginners. The

concepts can be quickly

grasped and applied to

Unity game

development, making

understanding and

implementing design

patterns in game

projects easier.

The book might feel

like a childish book. It

may not cover the

depth of some patterns

as they apply to

complex game

development scenarios.

The book is more

suitable for beginners.

C# Design

Patterns

by Judith

Bishop

It focuses on

implementing design

patterns in C#,

providing practical

examples, and

demonstrating the

language’s

capabilities for

software

development.

The book directly

applies to Unity

development, focusing

mainly on C#. Also, it

offers practical

examples that can be

easily translated into

game development

practices, enhancing

code structure and

reusability.

Specific to C# and may

not cover design

patterns outside those

applicable to C#

programming, it could

limit exposure to

broader design pattern

applications in game

development.

One of the chosen sources is “Level up your programming with game programming

patterns,” an eBook by Unity Technologies (2022) covering various game development

aspects, including best practices in C# programming. The eBook referenced the “Design

Patterns: Elements of Reusable Object-Oriented Software” book, making it an invaluable

resource. It explains the concept of each pattern by tailoring it to fit the context of game

development. The document included an explanation for the observer, state, command,

10

singleton, and some other patterns with code samples and templates that anyone could use

as a reference. The document provided simple images, as shown in Figure 2, explaining

each pattern’s concept without including complex UML diagrams as they are directly

related to game development.

Figure 2. Concept explanation (retrieved from Unity Technologies, 2022)

The eBook by Unity is a reliable free resource to help understand design patterns

used explicitly for game development in C# due to using Unity-specific examples.

Unfortunately, the documentation lacks some design patterns that might be helpful in the

scope of game development. Additionally, the document does not show how to assign the

scripts to the correct object in the editor window, which might lead to confusion.

 As for another source, Tutorials Point is an online website that was taken into

consideration. It provides a wide range of tutorials and explanations for multiple

11

programming languages, including C#, C++, Java, Python, and many more. The website

provides well-organized documentation for each supported programming language, from

basic to advanced programming techniques. The website also includes well-documented

tutorials for over thirty design patterns, from the definition of each pattern to the

implementation steps. Even though Tutorials Point supports multiple programming

languages, it uses only Java to explain the implementation of the design patterns.

2.6 Design Patterns Used

2.6.1 Introduction

Design patterns provide better solutions to problems in object-oriented software

design. They capture expert approaches to designing flexible, reusable systems by

identifying class roles and critical relationships. The “Design Patterns: Elements of

Reusable Object-Oriented Software” book categorized patterns into creational, structural,

and behavioral categories (Gamma et al., 1994). Creational patterns handle object creation,

structural patterns deal with class composition, and behavioral patterns address

communication between objects. Examples include the Singleton, which restricts the

instantiation of a class to one instance, and the Observer, which allows event-based

communication between objects. Therefore, using advanced design patterns would

improve the quality of the software code, aiding in better comprehension and maintenance

(Antoniol et al., 1998; Nikolaeva et al., 2019).

Table 3. Design patterns type comparison

Pattern Type Purpose Focus Examples

12

Creational It focuses mainly on

object-creation

mechanisms and aims to

create objects that suit the

situation.

Object creation Singleton, Abstract

Factory, Builder,

Prototype, Factory

Structural It explains how to

assemble objects and

classes into larger

structures while keeping

the structures flexible and

efficient.

Class or object

composition

Adapter, Bridge,

Composite, Decorator,

Façade, Flyweight,

Proxy

Behavioral Define how objects interact

in a way that increases

flexibility in carrying out

communication.

Object

interaction and

responsibility

Observer, Strategy,

Command, State,

Template Method,

Iterator, Mediator,

Memento, Chain of

Responsibility, Visitor

2.6.2 Singleton Design Pattern

Figure 3. Singleton pattern (Retrieved from Kushwaha, n.d.).

 The singleton design pattern is one of the most controversial design patterns in the

world of software development. Some developers consider it an anti-pattern, making the

code more complex and a real pain to reuse or test (Safyan, n.d.). However, the pattern is

13

one of the most straightforward design patterns to implement as it does not involve

complex coding. The pattern will ensure the existence of only one instance of an object

throughout the application by destroying the duplicates when created (Freeman et al., 2013;

Gamma et al., 1994).

 The pattern helps simplify the process of connecting different scripts as it makes

the variable accessible globally across the application (Amat, 2020; French, 2023;

Kushwaha.). Additionally, the global variables reduce the number of consumed resources,

eliminating the need to store more data in memory (Finch, 2020). However, the singleton

could make the code more difficult to read and trace, especially when your project gets

larger (French, 2023). French (2023) explained the issue with a direct example of using an

audio manager and how it becomes more challenging to modify the manager when more

audio clips and settings are involved.

14

2.6.3 Observer Pattern

Figure 4. Observer pattern (retrieved from TutorialsPoint: Design Patterns - Observer Pattern,

n.d.)

The observer design pattern is used heavily in enormous aspects of software

development, which defines a one-to-many relation between objects (Design Patterns -

Observer Pattern, n.d.; Freeman et al., 2013). The pattern allows some classes to observe

and monitor some objects so that when the subject changes state, all observers are notified

and updated automatically (Gamma et al., 1994). Imagine it as if it was the monitoring

bracelet used in house arrests. The police officers (the observers) will use this bracelet to

register an observer on the suspect (the observable). When the suspect leaves the house,

the bracelet will notify the policemen (the observers) that the suspect’s location (the

observable) has changed.

15

According to Unity, the bigger the code gets, the more unnecessary dependencies

lead to inflexibility and excess overhead (Create Modular, More Maintainable Code with

the Observer Pattern | Unity, n.d.). As a result, they suggested using the observer pattern

to overcome this issue. The pattern is ideal for connecting different aspects of the

application “without being tightly coupled” (Hache, 2023). The pattern’s advantage is that

it separates the subject from the observer, who is uninterested in the observer’s actions after

receiving the signal.

2.6.4 State Pattern

Figure 5. State pattern (retrieved from Bishop J, 2007)

 The State pattern can be seen as a dynamic version of the Strategy pattern. It allows

an object to alter its behavior when its internal state changes while appearing to change its

class (Bishop, 2007; Freeman et al., 2013; Gamma et al., 1994). It encapsulates state-

specific behaviors into separate state classes and delegates them to the current state object

to handle requests rather than relying on conditionals. According to Gamma et al. (1994),

this pattern promotes loose coupling by avoiding conditional logic related to states within

16

objects. It provides a cleaner way to implement state-dependent behavior than using

polymorphism (Bishop, 2007).

The pattern applies when an object’s behavior depends on its state, and it must

change behavior at run-time based on that state, like a traffic light (Tutor, 2023). The state

of the light acts differently when in the green state versus the red or yellow states, so each

color has its own state. For example, writing multiple if statements based on different color

conditions would make the code very messy and difficult to read, and having so many

conditions will increase the difficulty in modifying the code. As a result, using the state

pattern could solve this problem by creating different classes for each color state, making

the code clean and easier to read as each state class handles its own specialized behavior.

For example, the RedState class would handle flashing the light and knowing when

to transition to green. This separation of concerns makes the code more modular and easier

to understand. The end benefit is that the traffic light class does not get bogged down with

all the specific state rules. It just tells the current state object to handle any actions. This

State pattern can apply to other objects with different modes or states.

17

2.6.5 Strategy Pattern

Figure 6. Strategy pattern (retrieved from TutorialsPoint: Design Patterns - Strategy Pattern,

n.d.)

 The strategy pattern defines a set of algorithms and encapsulates each to make them

interchangeable. A simple example would be imagining a clothing store switching

strategies to maximize sales during different seasons. For instance, the store would use a

summer strategy focusing on selling lightweight clothing, including summer sales. While

in winter, the strategy would change from selling lightweight clothes to something warmer

and heavier (Tim R, n.d.).

The strategy enables flexible run-time logic selection using interchangeable,

lightweight strategy objects, while the state pattern localizes state-based conditionals using

polymorphic state objects to avoid conditional complexity (Freeman et al., 2013). This

process allows the application to switch to different strategies or behaviors at run-time

without the need to modify the context. The pattern provides robust mechanisms where an

18

application needs to adapt to varying conditions or requirements, enabling developers to

choose the most appropriate algorithm or process dynamically.

2.6.6 Command Pattern

Figure 7. Command pattern (retrieved from TutorialsPoint: Design Patterns - Command Pattern,

n.d.)

 Command pattern separates the sender and receiver from each other by turning the

requested action into a stand-alone object (Command Design Pattern - GeeksforGeeks,

n.d.). Freeman et al. (2013) demonstrated the separation of the sender and receiver in a

straightforward example that simplifies understanding of the pattern. The book’s writers

discussed this pattern as a food order. The customer would send their food order request to

the chief through the waiter. The waiter will take that order and pass it to the chief, who

will execute the instructions provided by the upcoming order.

19

 The pattern brings several advantages to software development, making it a

powerful choice for multiple scenarios. For instance, Bishop (2007) highlighted that the

command pattern allows the application to make a list of the executed commands to allow

the object to undo or redo the tracked commands. This process is possible as the command

itself is an object that contains all the required instructions to be executed. Additionally,

the command pattern allows the developer to add new commands without modifying and

altering the existing code.

20

3. Technical Implementation

3.1 Introduction

 The technical implementation section will discuss the design, tools, and coding

methodology utilized to develop Escape the Planet. It will provide an overview of the game

engine, programming languages, software architecture patterns, and other technical

elements involved in constructing the game. Key aspects to be discussed include the object-

oriented design patterns leveraged to enhance the game.

 The choice of Unity as the game engine, along with C# for scripting, methods for

optimized mobile graphics rendering, approaches for efficient physics simulations,

strategies to handle mobile device limitations, and the modular scripting structure, enable

rapid prototyping and iterative development. This section will give insights into the

technical considerations and best practices that guided the development of Escape the

Planet to meet performance, responsiveness, robustness, and maintainability goals while

executing within mobile platform constraints.

3.2 Game Engine Choice

 After taking the literature and the documentation into consideration, the chosen

engine was decided to be Unity3D as it meets the requirements of developing Escape the

Planet. The engine provides a straightforward UI design that makes learning its

functionalities easier. In addition, the engine supports C# programming language, which

has a simpler learning curve when compared to C++ in Unreal Engine. Escape the Planet

does not count on high-quality graphics or high performance. As a result, going with Unity

21

seems more reliable since it is better used for developing games for mobile devices (Sarkar,

2023).

3.3 Icons and Sound Effects

 Every game requires elements that make it attractive, exciting, and entertaining. As

a result, sound and visual effects and icons are essential to enhance the game’s user

interface and audio experience. Escape the Planet provides multiple UI elements and

various sound effects, making the game more intuitive, fun, and easy to play. However,

designing these sounds and icons requires a creative mind and a sense of art, and lacking

these skills led to third-party providers providing thousands of free sounds and icons for

the community.

3.3.1 Sound Effects Source

 The game without sounds feels boring and might lead the players to lose interest in

the game. Also, it does feel great to have sound feedback when an action is being performed

or to use it as a hint when you get closer to an object. Additionally, the sound must also be

related to the action. For example, when the spaceship starts moving, the engine’s sound

must be relevant to the spaceship. Otherwise, playing a sports car engine when the ship

moves will not make sense. However, these sounds needed to be recorded and engineered

professionally for the perfect experience.

 Due to the complex challenges of recording these sounds, free resources were

reviewed. After going through multiple websites, “Zapsplat.com” provided various audio

effects that matched the scenarios where the clips were played. The website provides

22

thousands of audio clips that could be used in games, movies, software, and many more

applications. Their license allows any user with a free account to use these sounds as long

as the user credits and references them properly. For instance, “Sound effects obtained from

https://www.zapsplat.com.“

3.3.2 Icons

 The buttons in the game are an essential part of controlling multiple functionalities,

such as thrust, rotation, controlling the shield, and more. Some of these basic icons were

designed and created using Adobe Photoshop. Other complex designs were retrieved from

free source websites such as “Flaticon.com.” The website offers more than 14 million free

icons. The icons are well-designed and provide user-friendly visuals. Flacion.com allows

any user with a free account to use the icons as PNGs and other forms for the paid account.

However, the website license states that the used icons must reference the authors

appropriately. For instance, “Teleport icons created by Mihimihi – Flaticon,“ or “ image:

retrieved from Flaticon.com.”

3.4 Design Pattern Implementation

 Escape the Planet mainly counts on behavioral operations. After reviewing the

literature, articles, videos, blogs, and more resources, some design patterns were selected

to be implemented in the code to improve the game performance and the code quality, such

as singleton pattern, state pattern, strategy pattern, observer pattern, and finally, command

pattern.

23

3.4.1 Singleton

 Escape the Plant has data to be saved in order to showcase the player’s performance

in the game. The data includes the total number of deaths across the game. The process of

saving the data in multiple scripts and scenes is complex. For that reason, the singleton has

helped simplify the data management process by creating a DontDestroyOnLoad object

that will be carried on to all levels (Figure 8). The object will give access to other scripts

to save the data and give them permission to modify and alter it without connecting and

referencing them directly.

C# provides an extremely powerful feature to unbound the class to a specific type,

which will make the code applicable to different types with the same underlying behavior

(C# Programming Guide - C# | Microsoft Learn, 2022; Generics - Unity Learn, n.d.). C#

generics is a similar feature to C++ templates that was used in multiple scenarios.

A tutorial by Solo Game Dev (2022), “Unity Design Pattern - SINGLETON 2022,”

and Unity Technologies (2022), discuss how Generics help generalize the class and make

it reusable with different types of objects or variables. Additionally, both discussed how

implementing generics with the pattern has provided significant benefits, allowing the code

to be more flexible and reusable across the application. Following the tutorial, the pattern

was successfully implemented in the game. The singleton class will be generic, where T is

a placeholder for the type parameter (Figure 9), allowing other classes to be inherent for

the main singleton class without creating different singleton classes in the game.

24

Gamma et al. (1994) introduced the singleton pattern with the primary goal of ensuring

that a class can only have one instance. In Escape the Planet, the singleton class is created

once, and other classes inherit from it, allowing the reusability of the singleton class in

other classes without having them implement their singleton logic.

Bishop (2007) explained the logic behind using generics with a singleton class to

make the code reusable across the application. The writer’s example is focused on a wide

range of C# applications. However, it does not work perfectly with the Unity project. In

Escape the Planet, the pattern is coded to be used in the Unity application only due to some

Unity-specific features, such as MonoBehaviour and the DontDestroyOnLoad method.

Additionally, the pattern in Escape the Planet does not rely on a default constructor to

ensure the existence of one instance in the application. It uses the Awak method provided

by Unity to manage the singleton creation in the scene (Figure 9).

Figure 8. SaveDataManager as a singleton

25

Figure 9. Making the Singleton class generic to have different types of singletons

26

Figure 10. Marking the SaveDataManager Class as Singleton

Figure 11. CollisionHandler script accessing the SaveDataManager script to update the data

3.4.2 Observer

The observer pattern came in handy to modify the UI elements. It has been used to

keep the players updated with fuel state, shield time, collected starts, and the collected key

to unlock the doors. Whenever the player collects fuel barrels or starts pushing the thrust

button, the observer pattern will ensure that the fuel bar level matches the current fuel

amount. The process is implemented on all other UI elements to make this process easier.

27

In Escape the Planet, the pattern follows the core principles of the design pattern as

described in the books which is to define a one-to-many relationship between the objects.

However, the UI management includes multiple elements that depend on different variables

and game objects, and implementing the observer pattern for each object is inefficient and

would lead to so much redundant code. Fortunately, the tutorial by Solo Game Dev has

inspired the implementation of generics to the observer pattern. In Escape the Planet, the

implementation of generics has improved the way the observer pattern works. In Figure

14, both interfaces take generic parameters to avoid creating multiple interfaces for each

UIState.

What distinguishes the implementation of the observer pattern in Escape the Planet

is using UIState, an object of type enum, as shown in Figure 12, to enhance the flexibility

and clarity of understanding the UI management logic. In Figure 13, each enum will help

the observer pattern notify the corresponding observer when the state of the UI changes.

Figure 12. UI States

28

Figure 13. NotifyObservers method

Figure 14. IUIObservable and IUIObserver interfaces with a generic type parameter

 The FuelUIObserver will monitor the FuelManager, which will act as the

observable in this case.

29

Figure 15. Implementing the observer pattern on the Fuel UI element

Figure 16. FuelManager

3.4.3 State Pattern

 Implementing the state pattern was not as easy as the other used patterns in this

game. The pattern was complicated and confusing, leading to watching multiple tutorials

and going through several documents related to this pattern. A tutorial video called “How

to Code a Simple State Machine (Unity Tutorial)” by Amat (2020b) on his YouTube

channel explained the pattern using a question-answer approach, making the understanding

of the pattern more straightforward. Amat (2020b) explained the pattern using a Unity

example, which helped understand the pattern concept as it was directly connected to game

development using Unity. However, the developer provided some pre-coded examples with

multiple classes and methods and then started modifying the code to explain the pattern’s

30

concept, which some people might find confusing and difficult to keep up with the

implementation.

 A tutorial series called “Finite State Machines in Unity” by Thompson (2020) on

his YouTube channel explained the pattern using a sample project. The developer explains

the pattern using a baby-steps approach to help other developers understand the concept.

The example that Thompson (2020) used was simpler than that of Amat (2020b); however,

the tutorial series takes longer and more time. Both tutorials are considered reliable

resources for understanding the state pattern in Unity.

The pattern is used in two of the game’s main functionalities: the collision state and

the fuel pad state. Since the pattern allows the control of the entire object’s behavior, it

comes in handy in managing the player’s behavior. Both tutorials by Tommy Thompson

and Charles Amat inspired how the pattern was implemented in this game. For example,

Thompson (2020) used Scriptable Objects to present the state in Unity. Scriptable Objects

is one of Unity’s features that stores shared data independently from class instances. The

unique implementation by Thompson (2020) was not discussed in any of the books, leading

to a new way of implementing the pattern.

31

Figure 17. State pattern scripts folder

 In Escape the Planet, the design pattern does not use Switch case and If statements

in a client class to control the state machine. In Figure 17, multiple scripts were created to

implement the pattern in the game, and since the pattern is being implemented into different

functionalities, different approaches were created and coded in two different ways. The

first implementation of the project used an abstract class to specify the fuel pad states, as

highlighted in Figure 18. Meanwhile, in the CollisionState script, an interface class was

created to handle the different collision states, as highlighted in Figure 19.

Figure 18. FuelPadState Abstract Class

32

Figure 19. ColliosnState Interface

When the player interacts with the fuel pad, the state changes according to the

collision with the trigger area, as shown in Figure 20. The logic behind it is demonstrated

and highlighted in Figure 21Error! Reference source not found. This approach helps

eliminate any conditional statements such as IF or Switch.

Figure 20. Fuel Pad State Implementation

33

Figure 21. FuelPad Client Class

Implementing the pattern using an abstract class or an interface may provide some

changes to how it is coded. Weimann (2017) created a game programming course on

34

YouTube to help new developers gain the required skills to work with Unity. He has

discussed the differences between using an interface and an abstract class to implement

different features in Unity.

In an interface, it is allowed to define the methods that any class needs to

implement, and according to Microsoft, all versions above C#8 can contain a body code

for any of its methods, as shown in Figure 24, and in C#10 the interface can declare a static

variable; however, it cannot declare a variable as other classes. The code editor would

return an error, as shown in Figure 23 and Figure 24, and the code would not work. (Default

Interface Methods - C# Feature Specifications | Microsoft Learn, n.d.).

Figure 22. FinishState implementing CollisionState

Figure 23. Interface error

35

Figure 24. Interface new features

On the other hand, an abstract class could provide a default behavior to any object

inherited from it or provide some other methods that the inherited classes could use. For

example, in Figure 25, a method was defined to set the amount of refill fuel a station could

provide, and in Figure 26, the method was used to set the amount of fuel to 100 every time

the player landed on it. Such a behavior could not be implemented using an Interface.

Figure 25. FuelPadState Class with a setter method

36

Figure 26. ActiveFuelPadState Class

After defining all the states, a client class must use the pattern in order to implement

the pattern entirely. In Figure 27, the client references the FuelPadState to distinguish the

different behavior of the fuel pad when the player interacts with it. Now, in the FuelPad

Script, the behavior of the fuel pad changes when the player gets into the range and when

they exit it. In Figure 21, the OnTriggerEnter method checks if the player got in range, and

then it will call the ChangeState method to set the behavior of the fuel pad to be activated

and start providing the player with fuel. On the other hand, the OnTriggerExit method will

do the opposite. When the player leaves the range, the state will be changed to an idle state,

and the player will no longer be provided with fuel.

37

Figure 27. FuelPad Script

The implementation of the collision state followed a different approach than the

approach used in the fuel state. Each state is created as a MonoBehavior class, which

provides the ability to attach the script to an object, as shown in Figure 28. Using this

approach has eliminated the use of any conditional statement. In Figure 29, the old code

was commented out, and the new one implemented the new approach. In the old approach,

the code used the OnCollisionEnter method to check for the game object tag using a switch

case to decide what behavior to use. However, the pattern changed the way the game

functions. The OnCollisionEnter method will now get the object’s state after being hit and

then execute the corresponding behavior. If the object does not have any specific behavior,

the default behavior will be executed, which in this case is StartCrushSequence.

38

Figure 28. Attached state to an object

39

Figure 29. Collision State Implementation

3.4.4 Strategy Pattern

 Implementing the strategy pattern was much simpler than the state pattern. The

pattern is used to define multiple in-game collectible behaviors to help the player during

their journey. The strategy pattern was used instead of the state pattern in this case, as the

behavior of each collectible is almost the same but still slightly different. For example, the

state pattern is used when there is a significant change in the object’s behavior, similar to

what might happen when the player wins or loses the game. In a winning condition, the

player must go to the next level, and the data will be saved. While in a losing condition,

40

the player’s location will be reset, the data will not be saved, and the whole behavior will

change.

On the other hand, in the strategy pattern, the behavior does not change

significantly. For instance, the collectibles in the game have similar behavior where they

get destroyed, instantiate an explosion effect, and play a sound effect when collected. Still,

the type of power-up they provide or the sound effects are different.

 In Escape the Planet, the collectibles come in different shapes and types. Each one

of them has its own unique purpose. The FuelBarrle is used to boost the player’s fuel to

help them finish the level, and the ShieldPowerUp collectible helps extend the shield

uptime to protect the ship from any enemy cannons around the level’s map. Also, the Key

collectible is used to give the player the ability to unlock doors that hold valuable game

objects behind them, such as the Star collectible, which is used as a scoring system for each

level.

 In Figure 30, multiple scripts were created to implement the pattern in the game.

Each script serves as an essential part and provides the required behavior for each

collectible. Similar to the observer patterns, the strategy pattern implements generic

interface to ensure code fixability and reusability.

41

Figure 30. Strategy Pattern Scripts

Starting with the first major part of the pattern, the IcollectibleBehavior is a generic

interface, as shown in Figure 31, that defines a signature method that must be defined in

any class that implements the interface. Unlike the books, Escape the planet introduce the

strategy patterns alongside with the observer pattern. That allowed the creation of a fully

functional system that updates the UI as soon as the player collects one of the collectibles.

Figure 31. IcollectibleBehavior interface with a generic parameter

 Going back to the observer pattern, a UIManager class was created, and multiple

children managers were inherited from it, such as the FuelManatger, StarsManager,

42

ShieldManager, and KeyManager. Figure 32 highlights some of the collectibles’ behavior

classes. The collectible implements the interface with the specific UI manager type

responsible for updating the corresponding element on the screen.

Figure 32. Some of the Collectable Behaviors

43

Additionally, Figure 32 shows how the collectibles are similar but provide a

different algorithm to handle their own behavior.

In Figure 33, a client class that also uses a generic parameter was created to call the

collect method as soon as the player gets in the range of any of the collectibles on the map.

The Collectible class will act as a parent class for multiple children. The scripts will be

attached to a game object to make it a collectible object. The OnTriggerEnter method will

decide what algorithm to execute. Each collectible uses its own strategy that provides a

unique power-up for the player, as shown in Figure 34. However, the process of collecting

the object is still the same, as all the collectibles will spawn an explosion effect and then

destroy that object when collected.

Figure 33. The Collectible Parent Class

44

Figure 34. Children Collectible Classes

3.4.5 Command Pattern

 The command pattern solved an issue that the MobileController script failed to

solve. The MobileController was used to handle all the player input, which is against one

of the essential principles of programming, the separation of code logic. Implementing the

pattern made the player input system more flexible and easier to modify when a new

command is wanted, and refactoring the MobileController script has led to the creation of

multiple scripts to handle each input independently, as shown in Figure 35. The pattern

consists of multiple key components responsible for processing different player inputs.

45

Figure 35. Command Pattern Scripts

 The pattern is divided into four main parts that are combined with each other to

implement the pattern correctly. The first part of the command pattern is the Command

abstract class. This class defines an execute method that all the other commands must

implement.

Figure 36. Command Abstract Class

 The second part of the pattern is the Invoker class, which is responsible for the

execution of the player commands when they press a button. It calls the command object

46

and then runs the Execute method. The class is not connected to the pattern directly as it is

not unaware of the concrete class that implements the Command interface.

Figure 37. The Invoker Class

 Escape the Planet allows players to move up, stop thrusting, rotate left, rotate right,

stop the rotation, and finally toggle the shield. These commands are the next part of the

pattern, consisting of multiple concrete classes inherited from the Command abstract class.

Each command provides a parameterized constructor that will be used by the client class

to create a new object of the command, and these classes will also implement the execute

method as a part of the pattern to carry out a specific action similar to the MoveUp

command in Figure 38 and the RotateLeft command in Figure 39.

47

Figure 38. MoveUp Command

Figure 39. RotateLeft Command

48

 Finally, the last part of the pattern is the client class, which will be responsible for

creating the command objects and assigning each command to a specific button that the

player uses to perform an action. When the player presses a button, the client class will ask

the invoker class to execute the corresponding command.

Figure 40. InputHandler Client Class

49

 The command pattern in Escape the Planet did not implement the option to track

the player input or to give them the possibility to redo and undo the previously executed

commands due to the game’s nature and mechanics. The game depends on the player’s

reaction to the game’s obstacles, and allowing them to redo and undo the executed

command would not help them complete the game.

3.5 Conclusion

 In conclusion, Escape the Planet is a game that aims to make the players challenge

themselves. The game demonstrates various programming principles and design patterns

that were discussed by multiple developers and scholars in the literature. The development

process was covered with complex and difficult challenges that required well-structured

research to be able to solve the problems.

 All the books discussed the implementation of patterns using different approaches.

Gamma et al. (1994) focused on describing and introducing the patterns using a language-

agnostic approach. The main goal of his book is to introduce the solution and solve the

problem by providing a deep theoretical foundation. The book used UML diagrams and

simple examples that helped understand each pattern’s logic. The book was written over

20 years ago, making it an outdated but reliable source for understanding design patterns.

Bishop (2007) and Freeman et al. (2013) both referred to Gamma et al. (1994) book

due to its valuable information. Each of the books has its unique traits. Bishop (2007)

focused on tailoring the patterns around C# applications to help developers learn more

about object-oriented programming in C#. The book discussion of Generics helped to

50

create a reusable code and logic across Escape the Planet. The book was introduced back

in 2007 when C#3 was released. As a result, some of its examples can be improved by the

new C# features. Freeman et al. (2013) have a unique graphical representation of the

patterns. The authors focused on tailoring the patterns around real-life examples to make it

suitable for beginners who want to learn more about advanced OOP.

 The utilization of the Unity3D engine came along due to its simplicity, the massive

amount of community support and tutorials available online, and the C# programming

language, which is a powerful programming language used for multiple applications. The

engine also proved to be a robust environment for mobile platforms. The engine provides

a variety of external tools and free assets for limited-budget projects. The engine’s packages

are solid and robust and could be easily used. Moving forward, implementing multiple

design patterns, such as the Singleton, Observer, State, Strategy, and Command patterns to

implement some of the game core mechanics, has provided a solid code quality and

foundation that could be easily maintained and modified even if new features is planned to

be added later. In the end, the technical choices that came up through the developing

progress have led to successful implementation and a fully functional game. This solid

foundation also sets up solid foundations for future development and potential expansions

to the game.

The books do not provide a direct example of how to make your code reusable.

Escape the Planet, on the other hand, implements the patterns using a unique approach. The

game focused on tailoring the patterns around the Unity project, making it a valuable

resource for understanding how the singleton, observer, state, strategy, and command

51

patterns work in this environment. The project’s primary goal concentrated on making the

game functional using less code and practical solutions. The game followed all the practices

discussed in the books and tutorials and sufficient techniques inspired by the literature. It

ensures the code reusability and maintainability, as discussed in Technical Implementation.

Moreover, Escape the Planet visualizes the logic of the implemented patterns since it is a

game. The person who wants to learn more about the chosen patterns can go through the

code and watch the logic being implemented in front of their eyes.

52

4. Software Requirements and Specification

4.1 Introduction

 Creating an immersive and interactive experience is paramount in the evolving

landscape of mobile gaming. This section outlines the software requirements for Escape

the Planet. The requirements are segmented into distinct functionalities and interface

design elements, each crafted to enhance the user’s engagement and enjoyment.

4.2 General Functionalities

• The game shall allow the player to control the spaceship using on-screen buttons.

• The game shall provide a three-star scoring system for each level.

• Players could collect power-ups like shields and fuel boosts.

• The game shall track the player’s performance at each level. (The number of deaths

and the number of collected stars).

• The game shall display the fuel amount in the ship as a slider if enabled.

• The game shall display the shield’s remaining uptime as a slider if enabled.

• The game shall allow the player to restart each level at any point.

• The game shall allow the player to reset the game.

• The game shall allow the player to replay previously finished levels if the player

has not restarted the game.

4.3 Win Condition Functionalities

• The game shall proceed to the next level when the player hits the finish pad.

• The game shall store the number of collected stars for each level.

53

• The game shall change the last level reached variable to match the latest unlocked

level.

4.4 Lose Condition Functionalities

• The game shall restart the level when hitting any obstacle on the map.

• The game shall restart the counter of collected stars when losing.

• The game shall increase the number of deaths on losing.

4.5 Interface

• The game shall provide a user-friendly interface.

• The game shall provide appropriate visuals.

• The game shall use the English language for all of its written text.

• The game might provide slightly different views on different screens depending on

the aspect ratio.

4.5.1 Main menu wireframe

• The game shall provide a main menu to navigate between the scenes.

• The game shall provide a list of levels.

o The game shall enable the unlocked level buttons.

o The game shall disable the locked level buttons.

o The game shall display the number of collected stars for each level.

o The game shall provide a reset game button.

o The game shall provide a confirmation message for the reset option.

• The game shall provide a list of tutorials.

54

• The game shall provide a performance panel.

o The game shall display the total number of deaths in the game.

o The game shall display the total number of deaths for each level independently.

• The game shall provide a support panel.

o The game shall provide a contact email.

Figure 41. Main menu wireframe

4.5.2 HUD Wireframe

• The game shall display rotation buttons on the bottom-left side of the screen.

• The game shall display the thrusting button on the bottom-right side of the screen.

• The game shall display the pause menu button on the top-left side of the screen.

• The game shall display the shield button next to the thrusting button on the left if

needed.

55

• The game shall display the teleport button on the bottom-mid side of the screen if

needed.

• The game shall display the fuel slider on the top-left side of the screen next to the

pause menu button if needed.

• The game shall display the shield slider on the top-right side of the screen if needed.

• The game shall display the stars’ states on the top-mid side of the screen.

• The game shall display the key’s state below the stars’ state.

Figure 42. HUD Wireframe

4.6 Data and Information

4.6.1 Storage

• The game shall not save or store any private information.

• The game shall use the players’ local space for storage.

o The game shall store the player status in a binary file.

56

o The player shall not modify or edit the binary file (it may lead to data loss).

4.6.2 Data Security

• The game shall not ask players to provide any confidential information.

• The game shall not ask players to connect to the internet except for new updates.

4.7 In-game Purchase

• The game shall not provide any in-game purchases.

• The game shall not ask the player for Credit/Debit card information.

4.8 System Requirements

• The game shall work on Android devices compatible with a minimum API level of

24 and above. (Android 7.0 “Nougat” and above).

57

References

Ahmad, A., Feng, C., Ma, T., Yousif, A., & Shi, G. (2017). Challenges of mobile

applications development: Initial results. Proceedings of the IEEE International

Conference on Software Engineering and Service Sciences, ICSESS, 2017-

November, 464–469. https://doi.org/10.1109/ICSESS.2017.8342956

Amat, C. (2020). Everything You Need to Know About Singletons in Unity - YouTube.

https://www.youtube.com/watch?v=mpM0C6quQjs&ab_channel=InfallibleCod

e

Amat, C. (2020b). How to Code a Simple State Machine (Unity Tutorial) - YouTube.

https://www.youtube.com/watch?v=G1bd75R10m4&ab_channel=InfallibleCod

e

Antoniol, G., Fiutem, R., & Cristoforetti, L. (1998). Design pattern recovery in object-

oriented software. Program Comprehension, Workshop Proceedings, 153–160.

https://doi.org/10.1109/WPC.1998.693342

Arabaine, I. (2023, January 5). The State of Mobile UX: Challenges and Opportunities

| by Ilyass Arabaine | Bootcamp. https://bootcamp.uxdesign.cc/the-state-of-

mobile-ux-challenges-and-opportunities-71ea1af077ad

Arnomo, S. A., Simanjuntak, P., & Nur Sadikan, S. F. (2021). Overheating Analysis

of Mobile Phone Temperature Based on Multitasking Process. Proceedings - 2nd

International Conference on Computer Science and Engineering: The Effects of

the Digital World After Pandemic (EDWAP), IC2SE 2021.

https://doi.org/10.1109/IC2SE52832.2021.9792125

Bishop, J. (2007). C# 3.0 Design Patterns (J. Osborn, L. Dimant, & R. Wheeler, Eds.;

First Edition). O’Reilly Media, Inc.

58

Christopoulou, E., & Xinogalos, S. (2017). Overview and Comparative Analysis of

Game Engines for Desktop and Mobile Devices. International Journal of Serious

Games, 4(4). https://doi.org/10.17083/ijsg.v4i4.194

Command Design Pattern - GeeksforGeeks. (n.d.). Retrieved February 9, 2024, from

https://www.geeksforgeeks.org/command-pattern/

Constraints on type parameters - C# Programming Guide - C# | Microsoft Learn.

(2022, November 15). https://learn.microsoft.com/en-

us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters

Create Modular, More Maintainable Code with the Observer Pattern | Unity. (n.d.).

Retrieved December 26, 2023, from https://unity.com/how-to/create-modular-

and-maintainable-code-observer-pattern

Default interface methods - C# feature specifications | Microsoft Learn. (n.d.).

Retrieved April 6, 2024, from https://learn.microsoft.com/en-

us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-

methods

Design Patterns - Observer Pattern. (n.d.). Retrieved January 11, 2024, from

https://www.tutorialspoint.com/design_pattern/observer_pattern.htm

Drake, J. (2023, September 30). The Best Games That Use The Unity Game Engine.

https://www.thegamer.com/unity-game-engine-great-games/#night-in-the-

woods

Early history of video games - Wikipedia. (n.d.). Retrieved December 26, 2023, from

https://en.wikipedia.org/wiki/Early_history_of_video_games

Finch, D. (2020, April 28). Singleton Pattern Explained - Creational Design Patterns.

https://darrenfinch.com/singleton-pattern-explained-creational-design-patterns/

Freeman, E., Freeman, E., Bates, B., & Sierra, K. (2013). Head First Design Patterns.

Carcinogenesis, 34(2), 619.

59

French, J. (2023, May 22). Singletons in Unity (done right) - Game Dev Beginner.

https://gamedevbeginner.com/singletons-in-unity-the-right-way/

Games - Worldwide | Statista Market Forecast. (2023).

https://www.statista.com/outlook/amo/media/games/worldwide

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements

of Reusable Object Oriented Software.

Gapminder Tools. Retrieved December 5, 2023, from

https://www.gapminder.org/tools/#uichart$cursorMode=minus;;&model$mar

kers$bubble$encoding$size$data$concept=net_users_num&space@=country&

=time;;&scale$domain:null&type:null&zoomed:null;;&y$data$concept=cell_p

hones_total&source=sg&space@=country&=time;;&scale$domain:null&zoom

ed@:0&:1746238000;&type:null;;&x$data$concept=pop&space@=country&=

time;;&scale$domain:null&zoomed@:651&:1696976687;&type:null;;&frame$

value=1990;;;;;&chart-type=bubbles&url=v1

Generics - Unity Learn. (n.d.). Retrieved January 26, 2024, from

https://learn.unity.com/tutorial/generics#

Gregory, J. (2018). Game Engine Architecture, Third Edition. A K Peters/CRC Press.

https://doi.org/10.1201/9781315267845

Hache, C. (2023, May 17). Top 7 Design Patterns Every Unity Game Developer

Should Know | LinkedIn. https://www.linkedin.com/pulse/top-7-design-patterns-

every-unity-game-developer-should-charles-hache/

Knezovic, A. (2023, December 13). 200+ Mobile Game Statistics: Market Report

[2023] - Udonis. https://www.blog.udonis.co/mobile-marketing/mobile-

games/mobile-gaming-statistics#h2-0

60

Kushwaha, N. . Learn the Singleton Design Pattern - LEARNCSDESIGN. Retrieved

January 11, 2024, from https://www.learncsdesign.com/learn-the-singleton-

design-pattern/

List of Unreal Engine games | Fandom. (n.d.). Retrieved February 7, 2024, from

https://thecoolestvideogames.fandom.com/wiki/List_of_Unreal_Engine_games

Mitchell, P. (2023, May 19). Does Gaming Destroy Phone Battery? – TechCult.

https://techcult.com/does-gaming-destroy-phone-battery/

Nikolaeva, D., Bozhikova, V., & Stoeva, M. (2019). A simple approach to design

patterns identification in programming code. 2019 28th International Scientific

Conference Electronics, ET 2019 - Proceedings.

https://doi.org/10.1109/ET.2019.8878506

Safyan, M. (n.d.). Singleton Anti-Pattern - Michael Safyan. Retrieved January 8, 2024,

from https://www.michaelsafyan.com/tech/design/patterns/singleton

Sarkar, S. (2023, August 30). Unity vs Unreal: Ending the Endless Debate in Mobile

vs. PC/Console Game Development | LinkedIn.

https://www.linkedin.com/pulse/unity-vs-unreal-ending-endless-debate-mobile-

pcconsole-sarkar/

Šmíd, A. (2017). Comparison of Unity and Unreal Engine.

Szeja, R. (2023, August 3). 14 Biggest Challenges in Mobile App Development in

2022. https://www.netguru.com/blog/mobile-app-challenges

This Month in Physics History - October 1958: Physicist Invents First Video Game.

(2008, October).

https://www.aps.org/publications/apsnews/200810/physicshistory.cfm

Thompson, T. (2020). Building an Idle State | Finite State Machines in Unity (#2) |

Table Flip Games - YouTube.

61

https://www.youtube.com/watch?v=e8m6yXDIx9U&ab_channel=TableFlipGa

mes

Tim R. (n.d.). The Strategy Pattern. Retrieved February 3, 2024, from

https://www.topcoder.com/tc?module=Static&d1=tutorials&d2=strategyPattern

Tutor, L. (2023, August 17). State Pattern in C#: From Basics to Advanced | by Laks

Tutor | Medium. https://medium.com/@lexitrainerph/state-pattern-in-c-from-

basics-to-advanced-de3a0dc526af

Unity Design Pattern - SINGLETON (2022) - YouTube. (2022).

https://www.youtube.com/watch?v=F6Y8q9H3UZI&t=3s&ab_channel=SoloG

ameDev

Unity Technologies. (2022). Level up your programming with game programming

patterns | Unity. https://unity.com/resources/level-up-your-code-with-game-

programming-patterns?ungated=true

Weimann, J. (2017, September 10). Unity Interfaces vs Abstract Classes - Part 1 -

Interfaces - YouTube.

https://www.youtube.com/watch?v=kYJRIWjoeFA&ab_channel=JasonWeiman

n

62

Appendices

Sound Effects

 Below are the sound effects that are being used in the game. The file name has been

changed for easier reference in the code. The file name is usually named similar to this:

“zapsplat_warfare_missile_incoming_whizz_by_then_explosion_004_31165.mp3”

Sounds form Zapsplat

Collect Fuel.mp3 force field

touch.mp3

force field.mp3 industrial_machine_

fuel_pump.mp3

LabDoorClose.mp3

LabDoorOpen.mp3 Laser Gun Sound

Effect.mp3

StartsSoundFX.mp3

Sounds form Freesound.org

SFX - Death

Explosion.ogg

SFX - Rocket

Boost.mp3

SFX - Success.ogg

Icons

Uncollected key Icon retrieved from Flaticon.com.

Shield Button Icon retrieved from Flaticon.com.

63

Teleport Icon retrieved from Flaticon.com.

Uncollected Star Icon retrieved from Flaticon.com.

Collected Star Icon retrieved from Flaticon.com.

Pause Menu Icon retrieved from Flaticon.com.

	Escape the Planet: Revolutionizing Game Design with Novel OOP Techniques
	Recommended Citation

	Security of IOT

