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Glossary 

• Deepfake: Morphed videos or images created by Artificial Intelligence

• Fake Image Detection: The process of identifying images that have been

manipulated or altered in a deceptive manner to mislead viewers.

• LSTM: LSTM stands for Long Short-Term Memory which is a type of recurrent

neural network that has an ability to remember patterns over long durations of

time.

• AUC: A performance metric used to evaluate the effectiveness of a classification

model, typically used with the ROC curve.

• ROC: A visual chart that plots the true positive rate versus the false positive rate

for a binary classification system as its discrimination threshold changes.

• GAN: Generative Adversarial Networks (GANs) are a form of deep learning

framework composed of two neural networks: the generator and the discriminator.

The generator produces artificial data instances, like images, and the discriminator

evaluates whether these samples are genuine or synthetic.

• Autoencoders: Type of neural network architecture used for unsupervised

learning. They consist of an encoder network that compresses input data into a

lower-dimensional representation, and a decoder network that reconstructs the

original input data from this representation.

• CNN: Stands for Convolutional Neural Network, which is a deep learning

architecture designed for processing structured grid data like images. It utilizes

convolutional layers to automatically learn features from the input data.
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Abstract 

The rapid evolution of deep learning (DL) and machine learning (ML) techniques has 

facilitated the rise of highly convincing synthetic media, commonly referred to as 

deepfakes. These manipulative media artifacts, generated through advanced artificial 

intelligence algorithms, pose significant challenges in distinguishing them from authentic 

content. Given their potential to be disseminated widely across various online platforms, 

the imperative for robust detection methodologies becomes apparent. Accordingly, this 

study explores the efficacy of existing ML/DL-based approaches and aims to compare 

which type of methodology performs better in identifying deepfake content. 

In response to the escalating threat posed by deepfakes, previous research efforts have 

focused on inventing detection models leveraging CNN architectures. However, despite 

promising results, many of these models exhibit limitations in reproducibility and 

practicality when confronted with real-world scenarios. To address these challenges, this 

study endeavors to develop a more generalized detection framework capable of discerning 

deepfake content across diverse datasets. By training simple yet effective ML and DL 

models on a curated Wilddeepfake dataset, this research assesses the viability of detecting 

authentic media from deepfake counterparts. Through comparative analysis and 

evaluation of model performance, this study aims to contribute to the advancement of 

reliable deepfake detection methodologies. The models used in this study have shown 

significant accuracies in classifying deepfake media. 
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Chapter 1 

Introduction 
In the past few years, people have faced emerging issues with AI-made face-swapped 

videos or images. Specifically, machine learning fabricates images/videos in such a way 

that it is usually difficult to tell them apart from the real ones, and for these reasons they 

are called deepfakes. Deepfakes are primarily synthetic media in which a person's face 

in the image or video has been replaced by the likeliness of some other person. For 

instance, consider a video in which a reporter is reading the news; now replace his face 

with Person B. Now, the result is that Person B is reading the news in the video. Various 

techniques have already been studied by researchers to distinguish between the fake and 

real images, which include machine learning techniques like Support vector machine 

(SVM) [1-3] and deep learning techniques like Convolutional Neural Networks (CNN) 

[4-6]. There are two most common ways of creating deepfakes, which are Generative 

adversarial networks (GANs) and Auto-encoders, which have the ability to misguide 

people by developing a high-dimensional pseudo image/video and making the audience 

believe that a well-known person is speaking/acting, whereas, in reality, he is not. 

GANs are hard to train and difficult to use as a computational technique because 

they consist of a set of two neural networks, called generators and discriminators. This 

technique of deepfake generation believes that the generator should fool the 

discriminator; this makes the fakes more like real video and is significantly harder for 

the human eye to distinguish. Similarly, Autoencoders are another well-known deep 

learning technique; they have an encoder and a decoder function that carries some shared 

weights. Encoders and decoders can be utilized to take compressed details of an image 
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to outsmart the existing compressing standards [7]. There are three different ways of 

using face-swapping techniques, which are lip syncing (in which the lip region in the 

target image is replaced by another person's lip region and can make someone speak what 

they originally never spoke); face-swapping (in which the person's face in the target 

image is replaced by the person's image in source image) [8]; and the most dangerous 

one, head-puppetry (in which target person's face is animated through the person sitting 

in front of the camera). Figure. 1 is a very good example of head puppetry [9].  

 

Figure 1. Example of head puppetry deepfake of President Barak Obama, from [9] 

Deepfakes could be circulated over the globe with false news and people tend to 

believe and find it credible, which is an emerging threat to society. Detection of the 

deepfakes in the early years of the issue was possible even with the naked eye since you 

could see a color mismatch, the low resolution of synthesized faces, and sometimes 

temporal flickering [7], but since the current methodologies have transmogrified, 

detecting it with our eyes is not even possible, it is of that high quality [10, 11]. Deepfake 

has been a source of misinformation and malevolence since it was introduced, causing a 

threat to society and political agendas [12]. At the depth of deepfake is deception—which 

is knowingly, technically, or intentionally, causing someone to believe something which 

is not true, typically to address personal, political agendas[13].The repercussions of 

deception by deepfakes are far more perceptible compared to that of verbal deception, it 
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not only changes the oral content, but it also fabricates the visual properties of the 

videos/images on how the message was delivered [13].  

Deepfakes produce tremendous threats for the future where fake news can be seen 

everywhere and can cause social impact, this unrestrained technological change deforms 

the truth, many times it could be intended for fun purposes, but often it is not. Therefore, 

I think there is a necessity for an effective, efficient detection techniques/algorithm which 

could stop the creation and usage of fake videos and evidently ML/DL techniques are 

good assets to recognize the human activity pattern to fight the threat [14-16]. In this 

study, I aim to present an overview of the latest advancements in deepfake detection 

models and address their limitations, along with outlining potential areas for future 

research.  

The latter part of thesis is structured as follows: Chapter 2 will delve into a 

comprehensive literature review, encompassing past deepfake methodologies, our search 

methodology, and literature analysis; Chapter 3 will provide detailed insights into the 

WildDeepfake Dataset; Chapter 4 will elaborate on the methodology employed in my 

research, covering various aspects including feature extraction; Chapter 5 will present 

our findings; Chapter 6 will offer a thorough analysis; and finally, Chapter 7 will 

conclude with discussions on limitations and future directions. This will be followed by 

references and an Appendix containing code snippets for all models utilized in the study. 
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1.2 Detecting Deepfake’s 
Traditionally, deepfake detection methods involve combination of forensic analysis, 

complex algorithms and humanly inspection.  State-of-the-art methods for deepfake 

detection often involve sophisticated neural network architectures, leveraging both 

temporal and spatial features extracted from the data. One prominent approach is to use 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in 

combination with advanced training strategies and feature extraction techniques [15-17]. 

Deepfake detection algorithms may perform consistency checks across different 

modalities within the content, such as aligning facial movements with corresponding 

audio or verifying the coherence of body movements with the context of the scene [8]. 

Inconsistencies between different elements of the content can signal potential tampering. 

Advanced deep learning models, including CNNs and RNNs, can be trained to distinguish 

between real and fake media. These models learn to retrieve high-level features from the 

image data and classify whether it is genuine or synthetic[12]. Transfer learning, where 

pre-trained models are fine-tuned on deepfake detection tasks, has shown promising 

results in improving detection accuracy. 

1.3 Research Imperative 
Detection of the Deepfake’s is very crucial for various reasons, thus the few are listed 

below:  

Preservation of Trust in Media: In today's era, where information spreads rapidly 

through various digital platforms[18], maintaining trust in the authenticity of media 

content is paramount. Deepfakes, with their ability to convincingly alter audiovisual 

content, pose a significant threat to this trust. Without reliable methods to detect 
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deepfakes, individuals may become increasingly skeptical of the content they encounter, 

leading to a breakdown in trust in media sources and institutions. 

Combatting Disinformation and Misinformation: Deepfakes have the potential to 

amplify the spread of disinformation and misinformation. They can be used to fabricate 

events, speeches, or statements, making it challenging for individuals to discern fact 

from fiction[18]. Detecting deepfake helps in identifying morphed medias, which results 

in spreading less false information in the world. 

Protecting Individuals and Public Figures: Deepfakes can be used to create highly 

realistic forged videos or audio recordings of human beings, including public figures and 

celebrities, engaging in activities, or making statements they never did [9-10]. Such 

fabricated content can damage reputations, encourage harassment, or manipulate public 

opinion, and raise ethical concerns. Detecting deepfakes is crucial for protecting the 

integrity and privacy of individuals from such malicious attacks [8]. 

Preserving Democratic Processes: In democratic societies, the ability to make informed 

decisions based on accurate information is fundamental [8-10]. Deepfakes can be 

exploited to manipulate political discourse, influence elections, or undermine democratic 

processes [12]. By developing effective methods to detect deepfakes, we can mitigate the 

impact of such manipulative tactics and uphold the integrity of democratic institutions. 

Advancing Technological Solutions: The growth of deepfakes underscores the need for 

ongoing research and development of advanced detection techniques. Investing in 

research to enhance the precision and efficiency of deepfake detection not only helps 
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address the current threat posed by deepfakes but also drives innovation in the broader 

field of computer vision, machine learning, and cybersecurity. 

1.4 Objective 
This study aims to evaluate the effectiveness of machine learning algorithms versus 

deep learning algorithms in the detection of deepfake videos, utilizing the Wild Deepfake 

dataset as a reference. The research endeavors to answer the following questions: 

1. Machine learning algorithm demonstrates higher efficacy than Deep learning 

algorithm. 

2. How does the inclusion of a previously unused dataset impact the performance of 

each algorithm? 

3. What are the comparative strengths and weaknesses of machine learning and deep 

learning approaches in deepfake detection? 

 

Research Question: 

The central research question driving this investigation is: "What is the comparative 

effectiveness of machine learning and deep learning algorithms in detecting deepfake, 

considering the utilization of the Wild Deepfake dataset alongside previously unutilized 

datasets, and how can we develop an optimized deepfake detection model capable of 

maintaining both transferability across various datasets and achieving heightened 

accuracy?" 

The objectives include identifying the best-performing machine learning and deep 

learning algorithms for deepfake detection, evaluating their performance with a 
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previously unused dataset, and conducting a comprehensive comparative analysis to 

elucidate their respective strengths and weaknesses. 
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Chapter 2 

Literature Review 
 

In recent years, the rise of AI-generated face-swapping videos and images, commonly 

known as deepfakes, has presented a significant societal challenge [5]. These 

manipulative media creations pose threats to privacy, integrity, and security [17-22]. 

Given their proliferation across social media platforms, it has become imperative to 

develop effective countermeasures against this phenomenon. Although researchers have 

long been working on deepfake detection, recent years have witnessed notable 

advancements in detection techniques. Detecting deepfakes entails a binary classification 

task [12][13], determining the authenticity of media content, thus requiring substantial 

datasets encompassing both genuine and synthetic videos for model training. Several 

publicly available datasets cater to this need, including Celeb-Deepfake (Celeb-DF) [7], 

FaceForensics++ [13], FFIW10K [13], Deepfake Detection Challenge (DFDC) [23], 

WildDeepfake [24], among others.  

The purpose of this literature review is to explore the current body of research 

concerning the detection of deepfakes utilizing both machine learning and deep learning 

methodologies. This review will delve into the various techniques employed by 

researchers in this domain, along with an examination of the strengths and weaknesses 

associated with each approach. Through a comprehensive synthesis of these 

investigations, this review aims to offer insights into the prevailing landscape of deepfake 

detection research, while also highlighting potential avenues for future exploration and 

study. 
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2.1 Background 
In order to grasp the essence of this thesis, it is crucial to dive into the principle of 

machine learning, a pivotal subfield within artificial intelligence. Machine learning 

entails the training of algorithms to formulate predictions by scrutinizing vast sets of 

data. This discipline encompasses various methodologies, including supervised, 

unsupervised, and reinforcement learning paradigms [18, 25, 26]. Supervised learning 

entails the training of algorithms on tagged data [19], where the model is familiarized 

with data points tagged with corresponding categories. Subsequently, it undergoes 

testing by anticipate labels or categories for unobserved data. Conversely, unsupervised 

learning involves training algorithms on unlabeled data, aimed at uncovering latent 

structures inherent in the data.  

For the scope of this thesis, supervised learning is employed exclusively, wherein 

the deepfake images are categorized as either "real" or "fake." Deep learning, a branch 

of machine learning, utilizes neural networks to identify complex relationships between 

inputs and outputs. These networks consist of multiple layers of interconnected nodes 

that analyze data and produce predictions. Owing to the intricate network structure akin 

to the human brain, neural networks exhibit adaptability and capability in assimilating 

new information. 

Deep learning proves particularly efficacious in the area of deepfake detection, 

owing to the added layers or nodes that amplify the complexity of the model. This 

inherent complexity mitigates the need for extensive human intervention [8, 27], 

thereby facilitating the analysis of more intricate input data. Notably, deep learning 

facilitates feature extraction in images with relatively less preprocessing overhead. 
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However, it is noteworthy that simpler machine learning techniques remain proficient 

in deepfake detection despite the persuasion of deep learning methodologies. 

2.2 Search Strategy 
To find the most relevant research papers for my study, I conducted a thorough 

search across multiple databases, primarily utilizing Google Scholar, Minnesota State 

Library resources and Papers with Code [28]. Papers With Code is an especially 

valuable resource as it not only hosts academic papers but also provides links to 

associated software and datasets. This comprehensive approach allowed me to identify 

papers that not only discussed deepfake detection methods but also utilized datasets 

pertinent to my research interests, such as the WildDeepfake [24] and Deepfake 

Detection Challenge (DFDC) [23] datasets. 

In my search process, I employed a combination of keywords related to deepfake 

detection, machine learning, and face forgery to narrow down my results. By focusing 

on papers published after 2015, I ensured that my review encompassed the most recent 

advancements and findings in the field. 

To guarantee the quality and relevance of the selected papers, I established 

inclusion criteria. Firstly, the paper had to propose a method for detecting deepfakes 

and utilize an explainable dataset with good amount of size like WildDeepfake, DFDC, 

or FaceForensics ++ dataset etc.  Secondly, the papers were only included if they were 

published in peer-reviewed journals or conferences, guaranteeing a certain level of 

rigor and credibility. Lastly, the paper had to provide an assessment of the proposed 

deepfake detection method, enabling me to assess its effectiveness and performance. 
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Following the application of these inclusion criteria, I identified good amount of 

research papers that met all my requirements and were thus deemed suitable for 

inclusion in my literature review. These papers formed the basis of my study, providing 

valuable insights and perspectives on the current state of deepfake detection research. 

2.3 Dataset 
The search for relevant dataset began with a thorough exploration into the DeepFake 

Detection Challenge (DFDC) and the associated scholarly works [23]. The DFDC 

initiative, spearheaded by industry giants such as Facebook and Kaggle, aimed to 

combat the rising threat of deepfake technology. Central to this effort was the release of 

the DFDC dataset comprising over 128,000 videos, of which more than 104,000 were 

distinct deepfake creations. This dataset represented a significant leap in scale compared 

to existing resources, marking a pivotal milestone in the realm of deepfake detection. 

The creation procedure of the DFDC dataset involved collaboration with members 

who willingly permitted to have their images altered for research purposes. Advanced 

deepfake production techniques, including the Deepfake Autoencoder [5-8] method, 

Morphable-Mask/Nearest-neighbors face swap (MM/NN), Face Swapping GAN 

(FSGAN), StyleGAN, refinement, and audio swaps, were employed to produce realistic 

synthetic videos. Before insertion of the media in the dataset, these videos underwent 

preprocessing steps such as face tracking and alignment to ensure consistency and 

quality. Additionally, augmentation techniques such as face masks and Poisson blending 

were applied to enhance the realism of the deepfake videos, thereby posing a greater 

challenge for detection algorithms. 
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Beyond the sheer size and complexity of the dataset, the DFDC initiative also 

organized a Kaggle competition to foster innovation in deepfake detection [23]. With 

over 2,000 participants, the competition served as a catalyst for the development of 

novel detection methodologies. However, the evaluation process introduced a unique 

challenge; while models were initially assessed on a public test set during the 

competition, final evaluation occurred on a private test set, unbeknownst to participants. 

This discrepancy in evaluation datasets underscored the importance of robustness and 

generalization in deepfake detection models. 

 

Figure 2.Relative size comparison of the current deepfake dataset from Extracted from [23] 

In addition to the DFDC dataset, attention was also directed towards the 

WildDeepfake dataset [24], which offered a contrasting approach to data collection. 

Unlike the DFDC, which relied on controlled environments and known manipulation 

techniques, the WildDeepfake dataset was sourced entirely from the internet. This 



14 
 

dataset, comprising 7,314 face sequences from 707 videos [24], encompassed a diverse 

array of deepfake instances with varying qualities, angles, and creation methods. Despite 

its smaller scale compared to the DFDC, the WildDeepfake dataset posed unique 

challenges due to its heterogeneous nature and unknown origins of the deepfake content. 

Researchers recognized the untapped potential of the WildDeepfake dataset and 

sought to explore its utility in deepfake detection research. However, the dataset's 

underutilization in prior studies highlighted the need for tailored detection 

methodologies capable of addressing its distinct characteristics. [24] for instance, 

proposed attention-based deepfake detection networks (ADDNets) designed to 

accommodate the temporal dynamics of deepfake sequences, thereby enhancing 

detection accuracy. Their findings underscored the value of developing specialized 

techniques to effectively address the obstacles posed by real-world deepfake scenarios. 

Furthermore, the landscape of deepfake datasets expanded with the introduction of 

FaceForensics++ (FF++) and other similar resources. These datasets, comprising real 

videos morphed using popular deepfake techniques such as Deepfake, Face2Face, 

FaceSwap, and NeuralTextures, provided additional benchmarks for evaluating 

detection algorithms. However, researchers noted challenges related to generalization, 

as models trained on these datasets struggled to adapt to unseen deepfake variations due 

to the limited diversity of identities and manipulation techniques. 

2.3 Previous Methods 
Over the past few years, there has been a surge in fraudulent media in the world. This 

media which has brilliant deceptive ability is referred to as deepfakes, which is an 

alarming issue [29]. These manipulated media assets have the possibilty to undermine 
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trust, control public opinion, and facilitate various forms of fraud and misinformation. 

Recognizing the gravity of this threat, researchers and technologists have intensified 

efforts to develop effective methods for detecting and mitigating the impact of 

deepfakes. 

Detecting deepfake is fundamentally a binary classification problem: distinguishing 

between authentic and manipulated media. To train accurate detection models, a diverse 

dataset encompassing both genuine and fake media is indispensable. Such datasets 

provide the foundation for machine learning algorithms to discern patterns and 

characteristics unique to deepfakes [2,5]. However, creating such datasets is challenging 

due to the lack of authentic deepfake-free media and the ethical considerations 

surrounding the use of manipulated content. 

Despite the importance of simple machine learning techniques in deepfake 

detection, the prevailing trend in research has leaned towards more sophisticated 

approaches, particularly those leveraging deep learning and neural networks [5,6]. 

These advanced methods offer superior performance in discerning subtle manipulations 

and complex patterns characteristic of deepfakes [16]. However, their complexity often 

necessitates significant computational resources and expertise, limiting their 

accessibility and applicability in certain contexts. 

In navigating the landscape of deepfake detection research, a comprehensive review 

conducted by Juefei-Xu et al. [30] sheds light on the evolving strategies and 

methodologies employed in both generating and detecting deepfakes. By analyzing a 

wide array of papers and studies, the authors elucidate the dynamic interplay between 

adversarial actors creating deepfakes and researchers developing countermeasures. This 
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iterative process drives continual advancements in both deepfake generation techniques 

and detection methods, underscoring the need for ongoing vigilance and innovation in 

addressing this evolving threat landscape. 

While deepfake detection remains a challenging and multifaceted endeavor, recent 

progress in research offers promising insights and approaches to tackle this issue [5]. By 

leveraging interdisciplinary expertise, large-scale datasets [23, 24], and innovative 

algorithmic techniques, researchers are gradually enhancing the robustness and efficacy 

of deepfake detection systems. However, continued collaboration and vigilance across 

academia, industry, and policymakers are essential to stay ahead of emerging threats 

posed by deepfake technology. 

2.3.1 Strategies for Detecting Deepfakes 

In the portion of the study dedicated to detecting deepfakes, Juefei-Xu et al.[30] provide 

a comprehensive overview of three primary methodologies used for this purpose: 

biology-based detection, frequency-based, and spatial-based [30]. 

 Spatial-based detection methods focus on examining visual deviations within the 

spatial domain of media to distinguish between genuine and fake media. This approach 

encompasses techniques such as image forensics-based detection, which scrutinizes 

pixel-level variations using various forensic tools, and deep neural network (DNN) 

based detection [30, 31], that leverages DNN models to retrieve spatial features from 

visuals. 

 Frequency-based detection methods, on the other hand, identify discrepancies in 

fabricated images that may not be readily apparent in the spatial area [32]. These 
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discrepancies originate from shortcomings inherent in GANs, a popular technique used 

for creating deepfakes. By analyzing frequency patterns, these methods can uncover 

subtle artifacts indicative of manipulation. 

 Biological-based detection approaches exploit environmental signs present in 

authentic media to differentiate them from fakes. This consists of detecting 

inconsistencies in visual and auditory cues, such as discrepancies in lip-syncing or facial 

expressions, which may be absent or unnatural in synthesized media. Additionally, 

biological signals like motion, facial emotions, for instance even heart rate can serve as 

indicators of authenticity. 

 While spatial and frequency-based detection methods are effective at identifying 

overt visual artifacts in deepfake media, they often struggle with generalization to 

unknown techniques and susceptibility to adversarial attacks[30, 32]. This means that 

they may be easily fooled by minor alterations to the input data, compromising their 

reliability in present scenarios where such attacks are prevalent. 

 Moreover, [30] suggests that as deepfake technology continues to evolve, deepfakes 

may become indistinguishable from real media, delivering spatial and frequency-based 

detection less effective. In such scenarios, biological-based signals may emerge as a 

more vigorous solution for identifying deepfakes. However, as deepfake generation 

techniques advance to replicate natural signals more accurately, the efficacy of 

biological-based detection may diminish. 

 Additionally, the authors of [30] acknowledge the existence of alternative detection 

approaches that do not neatly fit into the aforementioned classes, although these 
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approaches are less commonly utilized. Notably, convolutional neural networks (CNNs) 

[22, 29, 30] emerge as a popular choice for deepfake detection, particularly in image 

analysis, due to their effectiveness in extracting features from visual data. In contrast, 

linear machine learning methods are seldom utilized for deepfake detection tasks. Figure 

3 provides a summary of deepfake detection methods. Spatial methods are shown in 

blue, frequency methods in green, biological methods in yellow, and other methods in 

red. 

 

Figure 3. Various types of Deepfake detection categorize extracted from [30] 

2.3.2 Model Evaluation  

Different methods and models in machine learning need to be assessed using 

various evaluation metrics to understand how well they perform. Since there isn't a one-

size-fits-all approach for evaluating models, researchers must consider a range of 

metrics. Frequently employed measures in this area encompass precision, accuracy, F1 

score, recall, confusion matrices, ROC curves, and the AUC (Area Under the Curve). 

[33, 34]. 

Accuracy is a straightforward measure that tells us the ratio of correctly organized 

events out of all events. Whereas Precision and recall focuses on the efficacy of the 

model, specifically on positive instances. Precision calculates the fraction of truly 
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ranked positive events out of all instances classified as positive, while recall measures 

the shares of correctly grouped positive events out of all actual positive events [27]. The 

F1 score combines precision and recall into a single value, providing an overall 

assessment of the model's performance. 

To gain a better understanding of these metrics, researchers often use confusion 

matrices. These matrices provide a comprehensive breakdown of the model's 

effectiveness by showing the counts of true positives, true negatives, false positives, and 

false negatives [27, 33, 35]. True positives represent the correctly classified positive 

instances, while false positives indicate false instances that were falsely grouped as 

positive. Similarly, true negatives and false negatives symbolize the same values but for 

negative instances. 

Additionally, ROC curves offer a visual representation of the model's ability to 

discriminate between true and false events. By plotting the true positive rate against the 

false positive rate, researchers can visually distinguish the performance of several 

machine learning models. The area under the ROC curve (AUC) quantifies the overall 

performance of the model, with a perfect model achieving an AUC of 100%. 

By utilizing these performance metrics and evaluation methods, researchers can 

effectively assess the performance of machine learning models in identifying deepfakes. 

This facilitates informed decision-making regarding the selection of models for future 

research and application in real-world scenarios. 



20 
 

2.3.3 Prior Models 

In exploring more sophisticated methods beyond the simpler approaches discussed in this 

study, CNNs emerge as a notable alternative. CNNs are a type of deep neural network 

precisely designed for analyzing visual data, making them well-suited for tasks involving 

image processing and recognition. Bonettini et al. [36] suggested a novel approach for 

classifying manipulated faces in videos by harnessing the power of CNNs, particularly 

through the use of ensemble learning [36]. 

Ensemble learning involves merging several individual models to make predictions 

collectively, often resulting in improved performance compared to using a single model 

alone. The authors of [36] utilized an ensemble of different CNN-trained models to 

improve the accuracy and reliability of their detection method. To kickstart their 

approach, they employ the EfficientNet family of models, renowned for their exceptional 

accuracy and computational efficiency relative to other CNN architectures. 

EfficientNetB4, a specific model from the EfficientNet family, is chosen as the foundation 

due to its favorable balance of low computational requirements, fast processing speed, 

and high accuracy. However, the authors [36] introduced two key modifications to further 

enhance the performance of EfficientNetB4 in detecting manipulated faces within videos 

[36]. 

The first modification involves incorporating an attention mechanism into the 

model architecture. This attention mechanism facilitates the model not only to focus on 

the appropriate regions within the input videos but also provides insights into which parts 

of the images the network deems most informative for making accurate predictions. A 
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visual depiction of this modified architecture is illustrated in Figure 4. which can be seen 

on the next page. 

Additionally, the authors [36] adopted a Siamese training strategy as the second 

modification. This training strategy involves training the model by comparing pairs of 

examples, enabling it to learn more effectively from the data by discerning differences 

between various instances. 

The proposed method by the authors of  [36] is rigorously evaluated using two 

widely recognized datasets: Face Forensics (FF++) and DeepFake Detection Challenge 

(DFDC). Impressively, the model achieves a high AUC  of 94.44% on the FF++ dataset 

and 87.82% on the DFDC dataset, indicating its strong performance in detecting 

manipulated content across different datasets. 

 

Figure 4. EfficientNetB4Att Architecture extracted from [36] 

Barni et al. [37] present a technique for detecting images generated by Generative 

Adversarial Networks (GANs). They introduced two deep learning algorithms: the 

CoNet and the Cross-CoNet. The CoNet examines the conjunction matrices of the RGB 

channels within a picture to discern between genuine and GAN developed images. In 
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contrast, the Cross-CoNet [37] enhances the CoNet by considering the interrelations 

among the color bands, enabling it to separately calculate color and spatial co-

occurrences for each band. 

Aforementioned models exhibit strong performance on the StyleGAN2 dataset 

[37], achieving a performance accuracy of 98.15% for the CoNet and 99.70% for the 

Cross-CoNet. Notably, the Cross-CoNet demonstrates heightened robustness against 

post-processing, indicating its capacity to maintain effectiveness even when input data 

undergoes alterations. In the context of machine learning, "robustness" denotes a model's 

capacity to sustain performance despite changes in input data, suggesting enhanced utility 

in practical applications. The authors [37] recommended future investigations exploring 

deliberate attacks to test the model's resilience, as well as its performance when exposed 

to unfamiliar datasets.  

A variety of methodologies have been explored in the quest to identify deepfake 

content, each targeting specific aspects such as facial inconsistencies, temporal 

irregularities, audio-visual disparities, and spatial anomalies within videos [23-26]. In a 

study aimed at discerning manipulated photos generated through face-swapping 

technology, researchers introduce the DenseNet169 model, leveraging facial-warping 

artifacts as discernible indicators [7]. To establish a robust detection framework, negative 

data samples comprised unaltered images of individuals augmented with various noise 

types including Gaussian blur, Exponential blur, and Rayleigh blur. However, due to the 

absence of Gaussian noise during testing after applying affine transformation to the 

source image, researchers explored alternative variants to ensure comprehensive 

detection coverage. 
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The experimental process involved face extraction using the dlib package, followed 

by random affine transformations and resizing, supplemented by the addition of random 

blur effects before final resizing to produce authentic images. Subsequent evaluation of 

the detection model was conducted using the Celeb-DF dataset [7, 38], a repository of 

1000 high-definition videos featuring synthesized segments devoid of original facial 

artifacts, thereby posing a substantial trail for accurate detection [7]. 

In a complementary endeavor focusing on both the generation and identification of 

deepfakes, researchers delve into the utilization of autoencoders and Generative 

Adversarial Networks (GANs) [39]. For deepfake generation, two autoencoders are 

employed: the first captures the features of the root image, while the second learns the 

features of the goal image. Subsequently, the goal image is recreated using the decoder 

of the source image, resulting in media charged with attributes of the source image. To 

refine the quality of generated deepfakes, authors propose the utilization of DFDNet [39], 

an image enhancement method. 

For detection purposes, researchers advocate for the adoption of MesoNet, a deep 

neural network designed to scrutinize fine-grained details within compressed frames [39]. 

MesoNet comprises four layers of successive Convolutions and pooling, followed by a 

dense hidden layer network. Training the model on a dataset containing over 5000 images 

grouped as real or fake, similar to previous studies, yielded a detection confidence interval 

of 80%. This comprehensive approach demonstrates significant advancements in both the 

creation and detection of deepfake content. 

The investigation conducted by [28] has brought to light a notable observation regarding 

deepfake videos: many lack the natural occurrence of eye blinking. However, recognizing 
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the adversarial tactics employed to counter detection methods, where adversaries 

manipulate the eye blinking pattern, presents a fresh challenge. In response, the authors 

of [11] introduce DeepVision, an algorithm aimed at detecting deepfakes by scrutinizing 

significant deviations in eye blinking patterns. Eye blinking, a spontaneous action 

influenced by various factors such as age, gender, and overall physical condition, offers  

 

a unique avenue for classification due to its iterative and unconscious nature. Leveraging 

this, DeepVision adopts an algorithm that meticulously examines behavioral and 

cognitive indicators affecting eye blinking patterns, providing a novel approach to 

verifying media integrity as illustrated in Figure 5.   

Additionally, [40] underscores the limitations structured in conventional feature 

extraction methods, which often yield single artifacts, thereby impeding model 

performance. To address this challenge, authors [40] supported integrating an attention 

mechanism into the detection model to obtain both global and local facial features, 

thereby enhancing accuracy. This integration is used in models such as XceptionNet, 

ResNet-18, and ResNet-50, with the ReLU activation function replaced by Swish 

Figure 5. Visualization of DeepVision's eye tracker provides insight into its ability to measure eye 

blinking periods using the Eye-Aspect-Ratio algorithm [11] 
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activation function for improved performance with deep neural networks [30]. 

Experimental validation utilizing the FaceForensics++ dataset demonstrates significant 

classification results, with the proposed architecture based on the ResNet50 model 

showcased in Figure 6. 

 

MesoNet, a model extensively employed in various studies [41] [42], is designed to delve 

into the mesoscopic features of images by utilizing a streamlined architecture with fewer 

layers. However, its initial design proved inadequate for processing compressed media, as 

it led to the degradation of background noise. 

Another noteworthy advancement comes from [43], who introduced a novel hybrid 

architecture combining CNN and VGG16 for deepfake classification. This innovative 

approach outperformed existing techniques, with their Deepfake predictor (DFP) 

achieving remarkable accuracy and precision rates of 94%. 

Additionally, [43] proposed a comprehensive method that integrates two distinct 

approaches to differentiate between authentic and fake videos. By leveraging ResNet-50 

Figure 6. ResNet-50 model enhanced with an attention mechanism [29]. 
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and a super-resolution algorithm [43], they enhanced the accuracy of identifying 

deepfakes, particularly in low-resolution videos. The resultant model exhibited a high 

accuracy rate of 94.4% on the UADFV dataset [43]. 

Moreover, [24] addressed fundamental challenges inherent in deepfake detection 

by proposing a DNN-based framework. Their approach aimed to tackle issues related to 

effective detection, applicability to compressed videos, and model complexity. Leveraging 

the FaceForensics++ dataset [24] with varying compression levels, they developed a 

sophisticated algorithm comprising two key modules: a CNN for retrieving frame features 

and a classifier network for detecting fake videos. After thorough experimentation with 

different CNN modules, including ResNet50, InceptionV3, and XceptionNet, authors of 

[24] opted for XceptionNet due to its superior accuracy. This comprehensive approach not 

only enhances deepfake detection but also lays the groundwork for addressing critical 

challenges in the field. 

Figure 7. Representation of the proposed architecture [24]. 
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Having explored CNN-based studies extensively, we now turn our attention to 

LSTM-based investigations, which offer a promising avenue for advancing deepfake 

detection methodologies. LSTM architectures have shown considerable efficacy in 

capturing temporal dependencies and sequential patterns inherent in deepfake videos, thus 

presenting a compelling alternative to CNN-based approaches.  

Researchers at [44] have directed their efforts towards the detection of video 

deepfakes, employing sophisticated DNN such as LSTM and InceptionResNetV2, a 

fusion of ResNet and InceptionNet with 164 layers designed for object detection and 

feature extraction from images. LSTM architectures address issues like the vanishing 

gradient problem in RNN and are specifically engineered to secure long-term 

dependencies in input data, processing them sequentially [44]. Leveraging a pre-trained 

InceptionResNetV2 CNN for feature extraction helps alleviate training and size 

constraints, streamlining the model's development. Subsequently, a 2048 LSTM layer is 

employed to analyze video manipulation across different temporal intervals, comparing 

frames to discern alterations and classify them accordingly. Furthermore, the proposed 

model of [44] exhibits the ability to identify manipulated segments within videos.  

Conversely, the study by [45] delved into the exploration of intra-frame modeling 

and inter-frame features to authenticate videos. Utilizing an optical flow-based feature 

retrieving approach, the authors fed time dependent features into a model which combines 

CNN and RNN architectures, achieving an impressive performance accuracy of 92% with 

the FaceForensics++ dataset [24]. Detailed insight into the proposed workflow is depicted 

in Figure 8. 
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I have observed that several investigations focus on either time-related details or 

visual signs, yet scholars in [30] have unearthed a method to differentiate between fake 

and authentic videos based on the pattern of human eye blinks, like what the developers 

of DeepVision have done. To discern between open and closed eyes, the researchers 

suggest employing a sophisticated neural network model blending CNN with RNN, 

known as Long-Term Recurrent Network. The suggested architecture of the LRCN model 

is illustrated in Figure 9.  

 

Figure 8. Workflow to detect deepfakes [37] 

 

Meanwhile, the researchers in [46] propose a structured approach. Initially, authors 

utilize a facial recognition network to identify the subject, followed by CNN to extract 

key features, employing Gaussian blur and noise to filter out high-frequency disturbances. 

Subsequently, the features are transmitted to the LSTM layer, where a sequence of 

Figure 9. LRCN method[28] 
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temporal attributes are constructed, analyzing tweaked facial aspects across frames. 

Additionally, the authors incorporate Recycle-GAN [30] into their method. The advantage 

of incorporating Recycle-GAN lies in its ability to iterate through evaluations, refining its 

parameters based on feedback, thereby improving its accuracy and adaptability. 

To summarize, prior methodologies have shown notable advancements in enhancing 

existing models and exploring novel avenues for identifying deepfakes. The literature 

examined in this study underscores the diverse array of strategies available for deepfake 

detection, encompassing advanced techniques like CNNs and LSTMs. Moreover, 

researchers have searched into various datasets and training methodologies, yielding 

enhanced model performance and increased adaptability to different forms of 

manipulation. However, the same problems continue to exist. The ever-evolving nature of 

deepfake methods necessitates continual adjustments and enhancements to detection 

approaches. Additionally, the absence of standardized datasets and evaluation criteria 

complicates result comparison across studies.  

To conclude, deepfake detection remains an active research domain, demanding 

ongoing exploration and experimentation. While this review highlights promising 

detection methods, there remains room for enhancing model accuracy and applicability. 

Additionally, it is important to understand comprehensive detection methods. Therefore, 

rather than developing a new sophisticated model, this research aims to gain deeper 

insights into an obscure dataset using fundamental machine learning and deep learning 

techniques. 
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2.3.4 Literature Analysis 

The presented Table 1 on page number 32 showcases a detailed overview of different 

investigations centered on identifying deepfake content. Every record in the table shows 

a distinct approach, explaining the methods utilized, the impact of the study on the 

domain, and the outcomes attained. Significantly, the 'Result' column predominantly relies 

on the accuracy metric as a standard for assessing effectiveness. This decision is supported 

by the characteristics of the datasets employed, which are imbalanced and make metrics 

such as precision and recall less dependable.  

The studies enumerated utilize a spectrum of methodologies, ranging from 

advanced deep learning architectures such as VGG16 and CNNs to traditional machine 

learning classifiers like Gaussian Naive Bayes, Support Vector Classifier (SVC) for SVM 

and Random Forest Classifier which can be used for Random Forest model. This diversity 

underscores the dynamic landscape of research in this domain, reflecting varied 

perspectives and approaches aimed at classifying fraudulent media. The primary way that 

we can evaluate the models is by observing the Accuracy of the model. Various studies 

showed that they could get accuracy higher than 80%. By which we can interpret that 

current methods are performing pretty well in classifying fraudulent images from the 

deepfake content. 

 In our research, I have found that authors are using various advanced algorithms to 

spot deepfake videos. These include CNN, DNN, RNN, and LSTM [20 – 40]. Sometimes, 

CNN is mixed with other methods to tweak certain settings and identify fake videos better. 

Some researchers are focused on spotting visual clues, while others look at changes in 

human behavior or characteristics that only humans have. For example, some models are 
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really good at spotting changes in how often people blink their eyes [11]. These methods 

were tested on diverse datasets like FaceForensics++ [15], Celeb-DF [7], UADFV[47], 

WildDeepfakes [24], and DFDC [21]. The UADFV dataset has around 34.6K images, split 

evenly between fake and real ones. These datasets were made using various techniques 

like GANs, Autoencoders, or other ways to alter images[47]. 

 The datasets I talked about earlier helped me compare different models, but the 

results could vary based on which dataset is used. Each model is good at spotting certain 

types of fake media, like those made with GANs or Autoencoders. So, one model might 

not work well with all datasets. Some studies focused on analyzing time-based features 

and did well, while fewer looked at human behavior. The DeepVision model did great, 

with an accuracy of about 87.5%. Results from these studies show that deep learning 

models like CNN, MesoNet, InceptionNet, and XceptionNet are effective. Overall, these 

models have really good model performance, showing improvement in spotting 

deepfakes. However, the CNN based models perform best only for the dataset which was 

used to train the model. If for instance we change the dataset, the model’s accuracy would 

drop significantly. So, it's valuable to use the appropriate model for the appropriate dataset 

to get accurate results. 
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Table 1. Literature Analysis 

 

 

Title Methods Results Dataset Contribution 

Methods of deepfake 

detection based on 

machine learning [7] 

DenseNet169 + 

Rayleigh Blur 
Accuracy: 60% 

Celeb-DF  

 

Found the indicators 

that can distinguish 

whether face 

manipulation is applied 

on any media. 

DeepVision: 

Deepfakes detection 

using eye blinking 

pattern [11] 

DeepVision with 

integrity verification 
Accuracy: 87.5% 

Eye Blinking 

Prediction Dataset 

from Kaggle. 

Invented new model 

that was able to set 

apart fake videos which 

has inconsistent eye 

blinking with 

significant accuracy. 

Deepfakes creation and 

detection using deep 

learning [40] 

MesoNet with DFDNet 

image enhancer 
Accuracy: 80% 

Online dataset 

containing 5000 

images. 

Application of image 

enhancer over the 

images increased the 

classification accuracy 

of the MesoNet. 

Combining deep 

learning and super-

resolution algorithms 

for deepfake detection 

[35] 

ResNet-50 with 

super resolution pre-

processing. 

Accuracy: 94.4% 
UADFV 

 

Model with super 

resolution had good 

accuracy. However, 

could not perform 

better on the head pose 

estimator. 

A novel machine 

learning based method 

for deepfake video 

detection in social 

media [48] 

ResNet-50, 

InceptionV3, 

XceptionNet 

Accuracy: 88%, 86%, 

96% 

FaceForensics++ 

 

 

Trained the model with 

immediate 

compression, which 

resulted in significant 

increase in accuracy. 

Deepfake Detection 

using 

InceptionResnetV2 and 

LSTM [36] 

InceptionResNetV2 

with LSTM 

20 Epochs: Accuracy 

84.75% 

40 Epoch: 

Accuracy91.48% 

Celeb-DF 

Basis of their model is 

to look for the left-over 

traces which are not 

visible by naked eye 

and due to which they 

acquired significant 

accuracy. 

 

 

A hybrid CNN-LSTM 

model for video 

deepfake detection by 

leveraging optical flow 

features [49] 

CNN-Optical Flow-

LSTM 

 

 

Accuracy: 91.21% 

 

 

FaceForensics++ 

Integrated Optical flow 

features in the CNN 

model to gain higher 

accuracy. 

 

In Ictu Oculi: Exposing 

AI Created Fake 

Videos by Detecting 

Eye Blinking [50] 

CNN-VGG and LRCN Accuracy: 96.2% CEW Dataset 

Introduced the LRCN 

(Long-Term 

Convolutional 

Network) to capture the 

eye blinking pattern. 
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Chapter 3 

Dataset 
For this thesis work, I carefully selected a dataset named WildDeepfake due to its unique 

characteristics and challenges it poses for deepfake detection [24]. Unlike many other 

datasets used in previous studies, WildDeepfake offers a diverse range of authentic 

samples, encompassing a wide variety of quality/pixel levels, angles, scenes, colored 

backgrounds, various lighting conditions, resolutions, compression rates, and different 

deepfake methods. This dataset consists of 7,314 face sequences which were extracted 

from 707 videos, with 3,805 images being grouped as real and 3,509 being grouped as 

fake. These images were taken from variety of unknown internet locations, with absolutely 

no information regarding their creation methods. 

While the WildDeepfake dataset might not be as extensive as some other popular 

datasets like DFDC, its practical examples make it invaluable for my project. The diversity 

within the dataset presents significant challenges for deepfake detection, as it requires 

models to be robust across various scenarios. Testing these challenges using a variety of 

models is crucial to ensure the value and reliability of the detection methods. Figure 10. 

Shows an example of the images that are available in WildDeepfake dataset. 

 

Figure 8. Sample image from the WildDeepfake Dataset [24] 
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To process the images within the WildDeepfake dataset, a detailed approach was 

adopted by  [24]. Authors utilized the Multi-Task Cascaded Convolutional Neural 

Networks (MTCNN) face detector to identify facial regions in each video frame and 

employed an ImageNet-pre-trained MobileNetV2 network to retrieve facial attributes. 

Subsequently, facial landmark removal by the dlib landmark detector aligned all faces in 

an order to create uniformly sized images. These images captured a wide range of subjects, 

demographics, lighting conditions, angles, positions, and more, making them highly 

representative of real-world scenarios. 

However, obtaining access to the WildDeepfake dataset was not easy at all since. It 

is not publicly available, and access had to be obtained directly from the creators. The 

dataset were shared through a Google Drive, but organizing the dataset proved to be a 

time-consuming task. The data were stored in .tar files, which needed to be downloaded 

and extracted, and they were spread across multiple nested folders. Careful sorting and 

organization were required to create a coherent structure for further analysis. 

After organizing the images, data cleaning was performed to guarantee the integrity 

and accuracy of the dataset. Image files were carefully inspected to eliminate any mixed 

values or redundant images. Once the data was cleaned and organized, efforts were made 

to streamline the data processing pipeline. Custom functions were developed to open 

images, assign labels, and extract features, preparing the dataset for model training and 

evaluation as seen in Table 2. 
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Table 2. Custom functions developed to assign the label, extract features and data organization. 

Function Name Description 

copy_tar_gz_files 

Iterate through the main folder and subfolder and 

copies all the “tar.gz” files to destination folder 

extract_tar_files_recursive 

Extract the “tar.gz” files from all the folder to the 

extract folder 

copy_png_files 

Iteratively looks for “.png” files inside the extract 

folder and copies to the final folder 

get_images_and_labels 

Function to extract the feature from the image and 

assign them a label. 

extract_features 

Function to extract the feature which initializes 

what type of features needs to be extracted. 

 

The code, accessible in Appendix A.1 to extract the data to be ready for the 

assigning label and extracting the features, operated as follows: 

1) The code has the  functionality for managing files within specified directories. 

2) It facilitates the identification and copying of ̀ .tar.gz` files to a designated destination 

directory. 

3) Furthermore, it enables the extraction of contents from ̀ .tar.gz` files, with subsequent 

deletion of the original compressed file. 

4) Additionally, the code offers support for locating and transferring `.png` files to the 

destination directory. 

5) Execution of the code initiates the process of copying PNG files from the specified 

source directory to the designated destination directory. 

The code, accessible in Appendix A.2, works the following way:  

1. Initialize seven new containers for the six characteristics and one label. 
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2. For each subdirectory within the designated data folder: 

i. Navigate to the subdirectory and locate files with the extension ".png". 

ii. Open and interpret the image file. 

iii. Derive all attributes utilizing the feature extraction process. 

iv. Assign each attribute to its respective container. 

v. Append the provided label (e.g., fake/real) to each picture. 

3. Provide the compiled records of all characteristics and tags. 

Additionally, a secondary scan of the dataset was conducted to eliminate any anomalies 

or inaccurate data points. During the data preprocessing phase, six distinct attributes 

which are entropy, wrapped, noise, blur, keypoints, and blobs were extracted and stored 

in separate containers after processing each file. 

The feature extraction process that can be seen in Appendix A.2, calls the function 

“extract_features”, which uses an image data as an input and performs the feature 

extraction. After converting the input image to grayscale to accommodate certain feature 

requirements, a series of manipulations are applied to extract each feature individually. 

Subsequently, a feature dictionary is established to meticulously store each feature along 

with its corresponding value. This comprehensive dictionary is then passed back, 

enabling seamless integration into subsequent functions. In the next chapter I will be 

explaining the specifics of all the six features mentioned before in detail. 

As mentioned above, the custom function for opening a folder and extracting the 

contents inside the folders was done by giving a directory path to the dataset folder, which 

post iterative execution assigns all the fake images as "fake”. This process was then 
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replicated for authentic data. Subsequently, a structured dataframe like a spreadsheet was 

generated to combine both fabricated and real datasets alongside their respective features. 

Post image processing, the resultant dataframe consisted of 84,980 distinct rows of image 

data, ensuring the requisite format for training, and evaluating machine learning models. 

An illustrative representation of the dataframe is showcased in Table 3. 

Table 3. Illustrating features with a Data Frame [24] 

Entropy Wrapped Noise Blur Keypoints Blobs Label 
6.9667 6.20356 0.072730 49.8958 0 2 real 

7.6364 6.22125 0.077251 151.995305 5 0 fake 
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Chapter 4 

Methodology 
This portion demonstrates the approach opted for constructing machine learning and deep 

learning models. Following an outline of the computational resources required for this 

project, the initial segment clarifies the feature retrieval  procedure used to generate a 

CSV table from the data. However, the latter part examines each of the selected models 

and identifies the features deemed most efficacious for model training. Additionally, I 

opted to employ two machine learning models and one deep learning-based model to 

ascertain the optimal performer on the WildDeepfake dataset. 

4.1 Computational and Software Used 
The computational resources utilized for this study comprised lab machines at Minnesota 

State University, Mankato, equipped with an Intel Core i7-7700K CPU and 32GB of 

RAM. These machines also featured NVIDIA GeForce GTX 980 GPUs with 4GB of 

memory. For software utilized, Jupyter Notebook with Python version 3.9 served as the 

primary development environment along with Visual Studio as per the execution needs. 

All requisite libraries were included, with particular emphasis on scikit-learn for model 

creation. Notably, the scikit-learn library facilitated the execution of various machine 

learning algorithms, including RandomForestClassifier and svm.SVC [51] by the 

sklearn. 

Additionally, for feature extraction from images, deep learning libraries such as 

TensorFlow and Keras were employed, with the VGG16 [44] model serving as a pre-

trained neural network for extracting high-level features from images. These libraries 
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provided robust tools for building and training neural networks [44], enabling the 

extraction of informative features essential for model training and evaluation. 

4.2 Feature Extraction 
The process of attribute selection involved experimentation and analysis. Upon examining 

existing studies, identifying optimal features and extraction methods proved challenging. 

Prior models often depend on sophisticated pre-existing techniques like ResNet, MesoNet, 

and Xception models for image and feature extraction [52]. These methodologies leverage 

deep learning algorithms to isolate facial data frames from longer videos and extract 

features. However, as the dataset for this project consisted solely of facial images, such 

advanced technology seems to be irrelevant. 

Despite possessing previous knowledge of machine learning model setup, a key 

challenge emerged: the extraction of features from the dataset. To enable machine learning 

models to operate effectively, image data must be configured into tabular format. Thus, 

the objective was to compile a table of actionable attributes from the images, facilitating 

pattern identification and accurate predictions by the models. Furthermore, all features 

utilized were numerical, encompassing both continuous and discrete values. 

Initially, the selection and extraction of initial features were undertaken from a 

subset of images for model training and recognition purposes. A decision tree model was 

established to validate the model development process and image classification capability 

of the machine because it is straightforward and easy to understand. It breaks down the 

decision-making process into simple, understandable steps, mimicking how humans make 

decisions. This makes it suitable for tasks like image classification, where we want to 
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understand how certain features lead to specific outcomes. Decision tree model Serving 

as a template, this model ensured that upon feature extraction, they could seamlessly 

integrate into a model, guaranteeing proper formatting and accurate outcomes. However, 

challenges emerged concerning data format discrepancies. For instance, the Histogram of 

Oriented Gradients, considered potentially advantageous for object detection within 

images, was unable to be effectively utilized for training basic models in this study. 

Despite its extraction from all images, it outputs a lengthy dimensional array, which posed 

an  interpretation challenge for decision tree models that rely on individual features. 

To find valuable features and secure proper formatting, a method was employed 

where individual images were chosen and validated with prospective features available in 

the scikit-image library. This particular library was selected because of its familiarity with 

previous classes and its well-documented resources. By exploring different options, 

studying examples, and analyzing the code, promising attributes were found. Initially, ten 

numerical components were selected based on their probable significance. The accuracy 

of the resulting model showed significant improvement compared to previous tests that 

only considered color data, indicating positive progress in the project. 

To refine the selected features, I tested the models by deleting one attribute at a time 

and examining the accuracy. This method is favored in identifying which features 

improved accuracy and which did not. Initially chosen feature like "Local Maxima" didn't 

impact accuracy. After multiple rounds of selection and hit and trial, I decided on six 

features which are: blobs, key points, phase unwrapping, blur, noise, and Entropy. Table 

4 on page number 41 shows the change in accuracy when each feature was removed. 
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Bigger numbers indicate more valuable features. Blur was consistently the most valuable, 

followed by entropy. Noise and phase unwrapping had the smallest impact on accuracy 

when removed. Despite this, every feature helped detect deepfakes. We are going to talk 

more in depth about each of the selected features. 

 

Table 4. The decrease in accuracy post removing the features from the model. 

Feature Random Forest SVM 

Entropy      1.64      3.46 

Blobs 
0.42 3.65 

Blur 
1.73 5.22 

Keypoints 
0.23 1.44 

Phase Unwrapping 
0.16 0.82 

Noise 
0.01 3.78 

 

4.2.1 Final Selected Features 

4.2.1.1 Entropy 

Entropy is a measure of complexity in an image, allowing us to understand how varied 

the gray-level distributions are within it. This complexity can capture subtle differences 

in shades of gray Figure 11, which are crucial for detecting anomalies or patterns in the 

Figure 9. Visualization of an Entropy from [53] 
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image. To compute entropy, I used the Shannon entropy formula, which calculates the 

entropy value based on the probabilities of different pixel values in the image. 

 Essentially, it sums up the product of each pixel's probability and the logarithm of 

that probability. This process results in a continuous float value representing the entropy 

of the image, providing valuable information for machine learning models to interpret and 

analyze images effectively [53]. Where p(K) represents the probability of pixels. 

S =  −∑(p(k) ∗ log(p(k))) 

4.2.1.2 Noise 

The "noise" feature originated from a technique called "non-local means denoising for 

reatining textures," as described in scikit-image [53]. In Figure 12, the image demonstrates 

the effect of de-noising using the non-local means filter. This algorithm replaces a pixel's 

value with an average derived from other nearby pixels, effectively restoring textures. 

However, instead of removing noise from the image, I measured the standard deviation of 

the noise using the function named estimate_sigma [53, 54]. The assumption was that 

highly fluctuating noise values might indicate fake images, while more consistent values 

could signify real images. 

 

Figure 10. From the Scikit image library [53], visualization of Noise and  denoising. 
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4.2.1.3 Phase Unwrapping 

Phase unwrapping helps reveal the true signal hidden within an image that can only be 

seen within a limited range. This uncovers important numerical data from the image, 

crucial for the models to understand. The unwrapping, depicted in Figure 13, produces a 

lengthy list of values from the image in the form of an array. To make this data useful for 

the machine learning models to interpret, I determined its range by subtracting the 

minimum from the maximum value. Which gave a continuous decimal number, that can 

be utilized by the model to interpret the wrapping value. The goal was for this range to 

offer insight into the image's characteristics, potentially varying between real and fake 

images [53]. 

 

Figure 11. Visualization of Phase unwrapping from [53] 

 

 

4.2.1.4 Keypoints 

 The keypoints feature relies on a special detector called CENSURE, known for its ability 

to detect details in images regardless of their size. According to the scikit-image library, 
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this detector performs better than others when it comes to tasks like aligning images and 

estimating movement [53, 54]. When applied to an image, the CENSURE detector 

identifies specific points of interest, called keypoints. From these keypoints, I extracted a 

value representing their quantity, which the models could use to learn patterns. This value 

was a whole number, useful for training the ML models. The expectation was that the 

count of keypoints might vary between fake and real images. keypoints are represented as 

red dots in Figure 14 [53]. 

 

Figure 12. Representation of Keypoints in red dots by [53]. 

4.2.1.5 Blur 

One of the important features is the estimated strength of the blur, In Figure 15 on the next 

page, is an example of a blurred image. To quantify the blur, a filter was applied to the 

image, and the average blur intensity across the entire image was computed. This 

calculation resulted in a continuous value, which was included as one of the features for 

training the future machine learning models. The expectation was that fake images might 

exhibit higher blur values compared to real ones. 
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Figure 13. Sample of the strength of blur from [53] 

4.2.1.6 Blobs 

The final feature that has been selected was the blobs. The method employs the Difference 

of Gaussian (DoG) technique to identify blobs, which are areas of either radiant spots on 

darker backgrounds or dark patches on glowing backgrounds in an image. In Figure 16, 

you can see blobs detected in a picture of stars in space. A straightforward count of these 

blobs was obtained from images, all standardized to the same size. This count was then 

incorporated into the models with the expectation that altered pictures might exhibit 

different numbers of blobs compared to authentic ones. 

 

Figure 14. Example of difference of Gaussian method used in Blobs [53]. 

 

 



46 
 

. 

Table 5. Extracted features from the WildDeepfake dataset. 

Extracted Feature 

Entropy 

Blobs 

Blur 

Keypoints 

Phase Unwrapping 

Noise 

 

4.3 Model Selection 

Post the extraction of features from the image dataset, six selected features as shown in 

Table 5. served as the basis for training the ML models. The selected models included the 

Random Forest and SVM. These choices were made because of  their robust capabilities, 

widespread adoption, simplicity, and existing literature on deepfake classification. 

Furthermore, these models were anticipated to get diverse outcomes. Notably, each of 

these approaches operates on the principles of supervised learning, wherein models are 

trained using labeled data (i.e., "fake" and "real") to anticipate outcomes. We will discuss 

about the model more in the following subsections. 

4.3.1 Random Forest 

The Random Forest algorithm, employed for classification, stands out as a robust 

ensemble learning technique that harnesses the collective power of various decision trees. 

Every decision tree within the ensemble is trained on a distinct subset of the dataset [34], 

ensuring an equitable representation of data points. This process promotes diversity in the 

trees' perspectives, enhancing the model's ability to capture complex patterns and 

relationships present in the data. By randomly selecting observations and features for each 
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tree, Random Forest mitigates the chance of overfitting and fosters a more generalized 

understanding of the underlying data distribution. 

Figure 17 provides a visual representation of the Random Forest architecture, 

showcasing its inherent flexibility in handling datasets with diverse features and 

complexities. Through the collaborative efforts of individual decision trees, the algorithm 

aggregates their outputs to arrive at a final classification decision [34]. This ensemble 

approach not only improves the robustness and reliability of predictions but also enhances 

the model's resilience to noise and outliers present in the data. 

 

Figure 15. Random Forest Model extracted from [55]. 

In the context of deepfake detection, Random Forest emerges as an optimal choice 

due to its capacity to effectively handle the intricacies and nuances associated with 

distinguishing between authentic and manipulated media [34, 55]. By leveraging 250 

decision trees, carefully selected based on their collective performance across various 

iterations, the model achieves heightened accuracy, as verified by the results exhibited in 

Table 6. 
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Table 6 Accuracy of Random Forest with multiple estimators 

 

 

 

 

 

 

4.3.2 Support Vector Machine (SVM) 

Support Vector Machine is a smart computer tool used for categorizing images into 

different groups. It does this by creating a boundary, which could be a line or a more 

complex shape, to distinguish between various sets of image points as effectively as it can. 

[53]. Imagine having different colored balls scattered on a table, and you want to draw 

lines between them so that each color is as far apart as possible. That's like what SVM 

does in higher-dimensional spaces [53].  

The goal of SVM is to identify the best possible line or surface (called a hyperplane) 

that separates the different groups while enhancing the space, or margin, between them. 

This maximization of space makes the model more robust and better at generalizing to 

new, unobserved data. Figure 18 helps in understanding the 2-dimensional classification 

task. 

Count of Estimators Accuracy 

10     0.9854 

50 
0.9878 

100 
0.9884 

150 
0.9879 

200 
0.9878 

250 
0.9881 
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Figure 16. Visual representation of SVM model image extracted from [52] 

 

For my thesis purpose, I chose SVM because it is known for handling complex, 

high-dimensional data well [53]. I used a specific setting called the radial basis function 

(RBF) kernel, which is a mathematical formula that helps SVM create the best possible 

separation between different data points. I found that this setting worked best for our 

purposes after experimenting with different options. 

The initial step involves preparing my data for analysis and training my model to 

recognize patterns effectively. This process begins by segmenting the data into two 

primary components: X and Y variables. The X variable encompasses all the features 

present in our dataset, while the Y variable symbolizes the labels denoting whether the 

data corresponds to real or fake images. 

Following the data organization, I proceed to divide the data into training and 

testing subsets. Through experimentation, I determined that allocating 80% of the data for 

training and reserving the remaining 20% for testing yielded optimal results. This split 

ratio was selected after exploring various combinations, including 70/30, 75/25, and 
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90/10, with the 80/20 split consistently outperforming the others. Moreover, to ensure 

fairness and reliability, the data split is randomized for each run of the program. Once the 

model is trained on the training dataset, its performance is evaluated using key metrics 

such as accuracy, precision, recall, and the F1 score. These metrics provide insights into 

the model's ability to correctly identify images as real or fake and highlight the efficacy 

of different features in contributing to its performance. Based on these evaluations, 

adjustments are made to refine the model, focusing on features such as the number of 

estimators and the choice of kernel. 

Overall, this detailed methodology ensures a systematic and thorough exploration 

of the dataset and the model's performance. 

4.3.3 MesoNet 

 MesoNet is a DL based approach which is designed to efficiently identify face tampering 

in the media. It especially targets the detection of hyper realistic forged medias. Traditional 

image forensics techniques often falter with videos due to compression that significantly 

weakens the data [33]. MesoNet proposes a solution through a deep learning model that 

focuses on the meso-level properties of images, boasting a high classification rate. 

 MesoNet comprises two networks: Meso-4 and MesoInception-4, both 

characterized by a low number of layers aimed at analyzing mesoscopic features of images 

for forgery detection [33]. 

Meso-4 starts with four layers of convolutions and pooling followed by a dense network 

with one hidden layer. The convolutional layers use ReLU activation functions and batch 

normalization to regularize their output and prevent the vanishing gradient effect, while 
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the fully connected layers employ dropout to enhance robustness [33]. It has 27,977 

trainable parameters. Figure 19 on page number 52 shows the network architecture of the 

model. Where the layers and the parameters are in the boxes whereas the output sizes are 

next to the arrow sign. 

MesoInception-4 modifies the initial structure by incorporating a version of the inception 

module at the beginning, swapping the first two convolutional layers. This increases the 

function space in which the model is maximized, using dilated convolutions to handle 

multi-scale information. This architecture has 28,615 trainable parameters. Figure 20 on 

page number 53 shows the network architecture of the MesoInception-4 model. 

The process involves identifying fabricated data through deep learning networks 

that analyze the mesoscopic level of image details. Given that microscopic analyses (e.g., 

image noise) are ineffective in the compressed video context and higher-level semantic 

analyses are easily fooled, especially with human faces, MesoNet employs an intermediate 

approach. The training involves successive batches of images undergoing slight 

transformations to improve generalization and robustness, using the ADAM optimizer for 

weight optimization. 
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Figure 17. The network architecture of Meso-4  [33] 

 For classification, MesoNet utilizes a relatively simple network structure 

that has demonstrated surprisingly effective results, attributing its success to focusing on 

mesoscopic properties rather than attempting to analyze either very high-level semantic 

details or low-level noise patterns. Image aggregation techniques are also explored to 

enhance detection rates further by leveraging multiple frames from the same video, 

effectively increasing the overall detection accuracy. 
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Figure 18. Network architecture utilizing inception modules in MesoInception-4 [33] 

 

 In my process, we identify 'X' as the collection of input data that I feed into my 

system and 'Y' as the corresponding set of true values I aim to predict. The relationship 

between 'X' and 'Y' is assessed by the function 'f', which acts as a predictor within our 

chosen algorithm, making educated guesses on the nature of the inputs. I have trained my 

networks using a library named Keras, renowned for its efficacy in implementing neural 

networks with Python. The networks learned through repeated trials with small groups of 

images, subtly tweaking their internal settings to improve their predictive accuracy using 

a method known as ADAM optimization [33]. I started with a base learning rate of 0.0001 

incrementally decreasing after every 1000 iteration until down to 0.000001. Which helps 

in generalization and robustness. Moreover, to verify that my MesoNet doesn't just 

memorize the images but understands the underlying patterns, for that reason some 

random manipulations were made to the image data like zoom, and shift in brightness. 
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This strategy strengthens the MesoNet model, helping it to perform well not just with the 

images it has seen but also with new ones it hasn't encountered before.
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Chapter 5 

Results 
In this part of the discussion, I explored the results from three different approaches based 

on  ML and DL that I have put to the test for classifying deepfakes. The main aim I am 

addressing with this work is to craft and refine these approaches to recognize these 

sophisticated fake media effectively. I gathered more than 7,000 images, gave them a 

digital makeover to highlight the telling signs I am after, and then put my three approaches 

to work: the random forest algorithm, the support vector machine, and MesoNet. Each 

mentioned model was trained on 80% of the dataset and then tested on the remaining 20% 

to see how well they could identify the fakes. 

I did not just overlook the model’s performance ; but I have measured their success 

with a bunch of different benchmarks: how often they're on the mark (accuracy), how 

much they can be trusted (precision), how good they are at catching the fakes (recall), and 

their overall detective prowess (F1 score). To understand this measurement closely, I used 

some handy visual helpers—a confusion matrix and a curve that shows their trade-off 

between identifying all the fakes without raising the concerns. 

To draw this curve for each method, I used a smart piece of code from a library 

called sklearn.metrics. This code will need two pieces of information: whether an image 

is real or fake and how suspicious the tool is about each image. Then, I told it which 

images were real. This gave me a bunch of points showing how often my models might 

make mistakes or catch fake images as I change how careful they are. These points started 

from being very careful, where they would rather miss a fake than accuse something 
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innocent, to being very cautious, where model would rather accuse everything just to be 

safe. Going through these steps helps me see how good my methods are at different levels 

of caution. 

The random forest model performed impressively well, achieving an accuracy of 

98.86%, precision of 98.89%, recall of 98.66%, and F1 score of 97.85%. Figure 21 

displays the confusion matrix, while Figure 21 showcases the ROC curve for the random 

forest model's outcomes. In the confusion matrix depicted in Figure 22 on page number 

57, there are 8241 true positives and 8559 true negatives, showing the random forest’s 

correct predictions. However, there were 92 false positives, suggesting that the model 

sometimes incorrectly predicted label 1. In contrast, there were 104 false negatives, 

indicating instances where the model missed predicting label 1 when it should have. 

 

Figure 21. ROC curve for the Random Forest Shows the perfect classifier. 
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Figure 22. Confusion Matrix for Random Forest. 

 

The SVM model did well, with an accuracy of 84.49%, precision of 84.10%, recall of 

84.43%, and F1 score of 84.273%. Figure 23 on page number 58 shows the confusion 

matrix, and Figure 24 on page number 58 displays the ROC curve for the SVM model's 

performance. The confusion matrix shown in Figure 23 displays 7043 true positives and 

7325 true negatives. However, the model came across a count of 1326 false positives, 

which indicates over-prediction of label 1 in some cases. Contrast to that the false 

negatives we comparatively to 1302. 
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Figure 19. Confusion matrix for SVM model. 

 

 

Figure 20. ROC curve for the SVM model. 

 

MesoNet model, which was based on deep learning did pretty well, In the evaluation of 

MesoNet to correctly identify the fraudulent media in the WildDeepfake dataset [24], the 
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Meso-4 network achieved an average accuracy of 89.1%, while the MesoInception-4 

network reached an accuracy of 91.7%. Meso-4 has an AUC score of 0.946 which 

recommends that model performed reasonably good in classifying the deepfakes. 

Nonetheless, the MesoInception-4 has an AUC score of 0.968.which interpreted that the 

model performed even better to Meso-4 in the identification of the fraudulent media. Thus, 

higher the AUC score value implies that the MesoInception-4 is more effective and 

efficient in predicting the deepfakes contrary to Meso-4. 

 

Figure 21. Roc curve for the MesoNet model. 
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Chapter 6 

Analysis 
Looking closely at the results in chapter 5, it's clear that the models excelled in identifying 

deepfakes. All three models which includes SVM, Random Forest, and MesoNet achieved 

high accuracy rates, even when compared to datasets that were considered easier to 

analyze. Notably, they outperformed previous state-of-the-art models designed for this 

explicit dataset, as seen in Tables 6 and Table 7 on page number 61. 

When I examined the performance of the Random Forest and SVM models, the random 

forest model emerged as the top performer across various metrics like accuracy, precision, 

recall, and F1 score. Its strength lies in its ability to handle complex datasets with 

numerous features and intricate relationships between them. Whereas, the SVM model 

showcased lower performance, partly due to its sensitivity to hyperparameters and 

susceptibility to overfitting when dealing with large feature sets. 

It's essential to consider that each model has its strengths and weaknesses. While random 

forest excels with complex data, Similarly, SVM can be effective with small, linearly 

separable datasets but may struggle with larger and more intricate data. 

Table 7. Results of all the Approaches used in this study. 

Dataset Approaches Accuracy 

WildDeepfake Random Forest     98.86% 

WildDeepfake 
Meso-4 89.1 % 

WildDeepfake 
MesoInception-4 91.1 % 
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WildDeepfake 
SVM 84.52% 

 

 

Table 8. Comparative analysis of various models on WildDeepfake Dataset. 

Title Dataset Method Accuracy 

FedForgery: Generalized Face 

Forgery Detection with Residual 

Federated Learning [56] 

WildDeepfake FedForgery 68.03 % 

Improved Xception with Dual 

Attention Mechanism and Feature 

Fusion for Face Forgery Detection 

[57] 

WildDeepfake 

Dual 

Attention 

Mech 

Xception 

83.32% 

Spatiotemporal Inconsistency 

Learning for DeepFake Video 

Detection [30] 

WildDeepfake STIL 84.12% 

Exploiting Fine-grained Face 

Forgery Clues via Progressive 

Enhancement Learning [58] 

WildDeepfake 

Progressive 

Enhancement 

Learning 

84.14% 

Fighting Deepfake by Exposing 

the Convolutional Traces on 

Images [59] 

WildDeepfake RECCE 83.25% 

Identity Mappings in Deep 

Residual Networks [60] 
WildDeepfake 

ResNetV2-

50 
63.99% 

Xception: Deep Learning with 

Depthwise Separable 

Convolutions [61] 

WildDeepfake XceptionNet 69.25% 

Methods of deepfake detection 

based on machine learning [7] 
Celeb-DF 

DenseNet169 

+ Rayleigh 

Blur 

60 % 

DeepVision: Deepfakes detection 

using eye blinking pattern [11] 

Eye Blinking 

Prediction Dataset 

from Kaggle 

DeepVision 

with integrity 

verification 

87.5% 
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Deepfakes creation and detection 

using deep learning [40] 

Online dataset 

containing 5000 

images. 

MesoNet 

with 

DFDNet 

image 

enhancer 

80% 

 

Overall, these findings undermine the significant impact of model selection on 

classification performance. The random forest model's proficiency in handling critical 

data and feature interactions positions it as a strong contender for various categorization 

tasks. Nonetheless, it is very crucial to realize the relative strength of respective methods 

and use them with appropriate dataset. Moreover, the performance of the MesoNet deep 

learning model stands out significantly, surpassing others trained on different datasets. 

When comparing all three models, random forest demonstrated superior accuracy, 

followed by MesoNet and then SVM as shown in the Table 7 on page number 60. 

6.1 Contribution 
During the early stages of my research, I explored deeply into the domain of deepfakes. I 

thoroughly analyzed various deep learning and machine learning models used in different 

fields, putting them through their paces on specific datasets to gauge their effectiveness. 

This involved a meticulous examination and gathering of valuable insights from relevant 

research papers. To better understand the complex inner workings of these models, I 

methodically broke down their components. The findings of this extensive investigation 

resulted in a research paper titled "Leveraging Deep Learning Approaches for Deepfake 

Detection," which was published in the esteemed Archives of the 7th International 

Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence in 2023 by the 
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Association of Computing Machinery (ACM). You can find this paper on Google Scholar 

and the ACM library. 

 The prime goal of this thesis study is to figure out if we could nail down those 

sneaky morphed videos, aka deepfakes, with accuracy. I was curious about how good 

machine learning and deep learning algorithms are at telling them apart from the real ones. 

So, I dove in to see just how well they could do it. In the beginning, there were quite a few 

challenges in figuring out how to manage the data. Specifically, I needed to extract it 

properly from the original folder, which was organized in a rather complex way. To tackle 

this extraction hurdle, I crafted a code. This code smoothly handles various data extraction 

tasks using different functions, as detailed in Table 2 on page 34. Each function mentioned 

in the table takes data from one folder and moves it to another. In simpler terms, the output 

of one function becomes the input for the next, resulting in a neatly organized dataset 

ready for the feature extraction process.  

 By reading various literature and understanding the pre-existing models, I chose to 

work with SVM, random forest and MesoNet because SVM and Random Forest are 

favored for their robustness in handling high-dimensional data, flexibility in feature 

representation, and ability to prevent overfitting, crucial for distinguishing between 

genuine and deepfake images. MesoNet, purposefully designed for deepfake detection, 

leverages its specialized CNN architecture to efficiently capture subtle manipulation 

artifacts, ensuring high detection accuracy. Moreover, MesoNet strikes a balance between 

computational efficiency and performance, making it suitable for real-time or large-scale 

deepfake detection tasks. By integrating SVM, Random Forest, and MesoNet into my 
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project framework, I have harness their complementary strengths to enhance the overall 

effectiveness and robustness of my deepfake detection system across diverse scenarios 

and variations, thus contributing significantly to the field of deepfake detection and 

mitigation efforts. Each algorithm underwent a bit of fine-tuning regarding how it 

perceives images. For the machine learning models, I made tailored adjustments to handle 

arrays of features during both training and testing phases. Meanwhile, MesoNet stands out 

with its capability to extract features directly from images, streamlining the process 

without the need for extra preprocessing steps. However, we did encounter some minor 

challenges, particularly regarding image input and output sizes, which needed tweaking 

to better suit the unique characteristics of the WildDeepfake dataset. 
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Chapter 7 

Conclusion 
As deepfake technology becomes more accessible, detecting fake videos is becoming 

increasingly challenging. This is concerning because spotting deepfakes is crucial for 

keeping information reliable in today's digital world. With deepfake technology getting 

more advanced, it's easier to manipulate images and videos, spreading false info. This can 

damage trust in real news sources and even cause problems in areas like politics and 

security. Since we rely so much on social media, we can expect to see more deepfakes, 

making detecting them even more important. 

In this research work, I have looked at different ways to find deepfakes using 

machine learning and deep learning methods. I discovered that techniques involving 

machine learning algorithms tend to be better at telling real from fake media. However, 

deep learning algorithm is significantly closer. By improving how I detect deepfakes, I 

can make sure the information I see is accurate and trustworthy, protecting against harmful 

uses of deepfake. 

Both machine learning and deep learning models have done well in spotting 

deepfakes, showing they are reliable approaches for detection purposes. However, it is 

machine learning based random forest model outsmarted the other two models used in this 

study. But it's essential to recognize their limitations and keep looking for ways to make 

them better. 
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7.1 Limitations 
In cutting edge era, spotting fake videos and images, known as deepfakes, is a big 

challenge. The methods I have for telling if a video is fake often rely on how it was made. 

For example, one model might work well at finding fake videos made with a certain 

technique but struggle with others. Most of the time, I try to spot fake videos by looking 

at facial features and how things move in the video. But for really good fake videos, these 

methods don't always work as well. Sometimes, the models can't detect fake videos if the 

face is straight towards the camera because models can't pick up on subtle changes in color 

or quality. 

Researchers say that these models have some big limitations. They struggle to 

handle new ways of making deepfakes, defend against attacks, and explain why they think 

a video is fake. Plus, models don't always work well with real-world deepfakes, especially 

if they are made in a way that the model hasn't seen before. 

One concern with this study is that it only used WildDeepfake dataset. Besides  the 

dataset tried to cover a wide range of fake videos, using more datasets would help check 

if the models can spot deepfakes in different situations. Also, the study only looked at a 

few machine learning and deep learning methods.  

Even though this study has some limitations, machine learning methods have 

revealed significant results in identifying deepfakes. Compared to deep learning methods, 

these basic machine learning models are simpler to understand and don't need as much 

computer power. By knowing what these models can and can't do and by trying out new 
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methods, I can keep improving at finding deepfakes and stopping them from causing 

harm. 

7.2 Future Work 
Moving forward, my aim is to broaden our research scope to encompass both image and 

video datasets created using various methods, such as GANs or Autoencoders. By doing 

so, I can ensure that our models are not limited to specific deepfake generation techniques. 

Additionally, future investigations should delve into the cost-effectiveness of building 

these models and explore optimal approaches for detecting inconsistencies across the 

entire face, regardless of specific facial regions. However, such endeavors will require 

extensive knowledge and in-depth study to progress further. 

While my current work has shown promise in identifying deepfakes within a high-

quality dataset, there remains a vast landscape to explore in this field. To move the field 

forward, we need to tackle current problems and look into what we can study next. 

One crucial domain to focus on is applying machine learning and deep learning 

methods to diverse datasets. For instance, the DFDC dataset offers a wealth of 

opportunities due to its extensive range of visual actors, picture qualities, and creation 

methods. Conducting cross-dataset evaluations will enhance the robustness and 

generalization of our models, ultimately resulting in more effective detection of real 

deepfakes. 

Moreover, investing time and effort into feature extraction is paramount. By 

leveraging the rich array of features available in libraries like scikit-image, I can better 
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interpret their value for detecting deepfake. Investigating various spatial, frequency, and 

biological features will equip our models to detect a wide range of deepfakes effectively. 

Staying abreast of research efforts is crucial as the proliferation of fake content 

continues unabated on the internet. With the advancement of AI-generated media, 

discerning truth from fiction online may become increasingly challenging. Through 

ongoing research endeavors, we aim to stay at the forefront of AI development and uphold 

the integrity of digital content. 

To summarize, it's vital to recognize the ongoing battle between deepfake 

generation and detection methods. While deepfakes are transforming increasingly 

convincing, relying solely on complex detection methods may not suffice. Instead, 

prioritizing a deeper understanding of models and utilizing simpler tactics for detection is 

key. While our research marks a step in this direction, further efforts are needed to combat 

deepfakes and fake content effectively. 
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Appendix A 
Code for Data Organization/Processing 

The code in the appendix organizes the data, post which is ready for the feature 

extraction phase.  

A.1 Data Extraction 
# Following piece of code read a folder for the tar file, extracts the  

# Folder with its material and deletes the all the “.tar.gz” file 

import os 

import tarfile 

import shutil 

 

def copy_tar_gz_files(main_folder, destination_folder): 

    # Check if the main folder exists 

    if not os.path.exists(main_folder): 

        print (f"Main folder '{main_folder}' does not exist.") 

        return 

     

    # Create destination folder if it doesn't exist 

    os.makedirs(destination_folder, exist_ok=True) 

 

    # Iterate through each item in the main folder 

    for item in os.listdir(main_folder): 

        item_path = os.path.join(main_folder, item) 

        # Check if the item is a directory (subfolder) 

        if os.path.isdir(item_path): 

            # Recursively call the function to copy .tar.gz files in subfolders 

            copy_tar_gz_files(item_path, destination_folder) 

        elif item.endswith('.tar.gz'): 
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            # Copy the .tar.gz file to the destination folder 

            shutil.copy(item_path, destination_folder) 

            print(f"Copied '{item}' to '{destination_folder}'") 

 

def extract_tar_files_recursive(destination_folder, extract_folder): 

    # Check if the main folder exists 

    if not os.path.exists(destination_folder): 

        print(f"Main folder '{main_folder}' does not exist.") 

        return 

 

    # Iterate through each item in the main folder 

    for item in os.listdir(destination_folder): 

        item_path = os.path.join(destination_folder, item) 

        # Check if the item is a directory 

         

        if item.endswith('.tar.gz'): 

            # Extract the .tar.gz file 

            print(f"\nExtracting files from '{item}':") 

            os.makedirs(extract_folder, exist_ok=True) 

            with tarfile.open(item_path) as tar: 

                tar.extractall(path=extract_folder) 

                print(f"Extracted files to '{extract_folder}'") 

         

        if item.endswith('.tar.gz'): 

            try: 

                os.remove(item_path) 

                print("Deleted file : {item_path}") 

            except OSError  as e: 

                print("Error occured deleting the file:", e) 
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def copy_png_files(main_folder, destination_folder): 

    # Check if the main folder exists 

    if not os.path.exists(main_folder): 

        print(f"Main folder '{main_folder}' does not exist.") 

        return 

     

    # Create the destination folder (where you want the extracted folder to be copied) if it doesn't exist 

    os.makedirs(destination_folder, exist_ok=True) 

 

    # Iterate through each item in the main folder 

    for item in os.listdir(main_folder): 

        item_path = os.path.join(main_folder, item) 

        # Check if the item is a directory (subfolder) 

        if os.path.isdir(item_path): 

            # Recursively call the function to copy .png files in subfolders 

            copy_png_files(item_path, destination_folder) 

        elif item.endswith('.png'): 

            # Copy the .tar.gz file to the destination folder 

            shutil.copy(item_path, destination_folder) 

            print(f"Copied '{item}' to '{destination_folder}'") 

        

if __name__ == "__main__": 

    main_folder = "C:/Users/******** /DeepfakeResearch/faketrainfolder/"   

    destination_folder = "C:/Users//******** /DeepfakeResearch/faketrainpictures/" 

    #extract_folder = destination_folder 

    # Call the function to extract .tar.gz files recursively 

    #copy_tar_gz_files(main_folder, destination_folder) 

    #extract_tar_files_recursive(destination_folder,extract_folder) 

    copy_png_files(main_folder, destination_folder) 
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A.2 Data Organization 
 Following function accepts a folder path containing images as an input, utilizes 

existing functions to extract features from each image, and compiles these features into 

separate lists. Additionally, it receives the corresponding tags for each image. Finally, it 

returns an array containing the feature data of all the data. 

import os 

import io 

 

def get_images_and_labels(folder, label): 

    calc_entropy = [] 

    calc_wrapped = [] 

    calc_noise = [] 

    calc_blur = [] 

    calc_keypoints = [] 

    calc_blobs = [] 

    assign_labels = [] 

 

    for subfolder in os.listdir(folder): 

        subfolder_path = os.path.join(folder, subfolder) 

        if not os.path.isdir(subfolder_path): 

            continue 

 

        for filename in os.listdir(subfolder_path): 

            if not filename.endswith(".png"): 

                continue 

 

            try: 

                img = io.imread(os.path.join(subfolder_path, filename)) 

                features = extract_features(img) 
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                assign _entropy.append(features['entropy']) 

                assign _wrapped.append(features['wrapped']) 

                assign _noise.append(features['noise']) 

                assign _blur.append(features['blur']) 

               assign _keypoints.append(features['keypoints']) 

                assign _blobs.append(features['blobs']) 

                assign_labels.append(label) 

            except Exception as e: 

                print(f"Error while processing image {filename}: {e}") 

 

    return assign _entropy, assign _wrapped, assign _noise, assign _blur, assign _keypoints, assign 
_blobs, assign_labels 

 

The code below invokes the previously mentioned function to process both fake and real 

images. Subsequently, it compiles the extracted features into a dataframe.# Assign the data 

fake_entropy, fake_wrapped, fake_noise, fake_blur, fake_keypoints, 
fake_blobs, fake_labels = get_images_and_labels(r" C:/Users/******** 

/DeepfakeResearch/faketrainfolder/", "fake") 

 
real_entropy, real_wrapped, real_noise, real_blur, real_keypoints, 
real_blobs, real_labels = get_images_and_labels(r"" C:/Users/******** 

/DeepfakeResearch/realtrainfolder/", "real") 

 

data = pd.DataFrame({ 

    "Final_Entropy": fake_test_entropy + real_test_entropy,  

    " Final_Wrapped": fake_test_wrapped + real_test_wrapped,  

    " Final_Noise": fake_test_noise + real_test_noise, 

    " Final_Blur": fake_test_blur + real_test_blur, 

    " Final_Keypoints": fake_test_keypoints + real_test_keypoints,  

    " Final_Blobs": fake_test_blobs + real_test_blobs, 

    " Final_Label": fake_test_labels + real_test_labels 

}) 
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# saving the data to a csv formatted file 

data.to_csv(data.csv") 

print(all_data.head()) 

 

A.3 Feature Extraction 
The following function accepts in an image, extracts all the features, and adds the 

data to a dictionary: 

 

def extract_features(imgs): 

gray_img = color.rgb2gray(img) 

 

# Entropy Feature Extraction 

entropy = skimage.measure.shannon_entropy(img) 

 

# Wrapped Feature Extraction image_wrapped = np.angle(np.exp(1j * img)) max_val = 

np.max(image_wrapped) 

min_val = np.min(image_wrapped) wrapped_range = max_val - min_val 

  

# Noise Feature Extraction astro = img_as_float(img) astro = astro[30:180, 150:300] sigma = 0.08 

noisy = random_noise(astro, var=sigma ** 2) 

sigma_est = np.mean(estimate_sigma(noisy, multichannel=True)) 

 

# Blur Feature Extraction 

blurred_images = [ndi.uniform_filter(img, size=k) for k in range(2, 32, 2)] img_stack = 

np.stack(blurred_images) 

 

# Keypoints Feature Extraction detector = CENSURE() detector.detect(gray_img) 

 

# Blob Dog Feature Extraction 

blobs_dog = blob_dog(gray_img, max_sigma=1, threshold=.1) 
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features = { ' assign_entropy': entropy, 

' assign_wrapped': wrapped_range , ‘assign_noise': sigma_est, 

' assign_blur': np.mean(img_stack), ' assign_keypoints': len(detector.keypoints), ' assign_blobs': 

len(blobs_dog) 

} 

return features 
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Appendix B 
Code for Model Training and Testing 

 

For the training and testing purposes of the model, the WildDeepfake dataset was 

randomly split between training and testing set with a ratio of 80:20. Where 80% of the 

data is for training and 20% data is for testing purpose. Python is used for developing the 

model as for making classification. 

B.1 Random Forest Model 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, 

roc_curve, auc 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Accessing the CSV file 

data_RF = pd.read_csv("data.csv") 

 

# Separating features and labels 

X = data_RF [["assign_Entropy", " assign_Wrapped", " assign_Noise", " assign_Blur", " 
assign_Keypoints", " assign_Blobs"]] 

y = data_RF ["assign_Label"] 

 

# Splitting the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 

 

# Standardizing the features 

scaler = StandardScaler() 
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X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Training the Random Forest classifier 

forest_model = RandomForestClassifier(n_estimators=250, random_state=1) 

forest_model.fit(X_train, y_train) 

 

# Making predictions on the test set 

forest_y_pred = forest_model.predict(X_test) 

 

# Evaluating performance 

forest_accuracy = accuracy_score(y_test, forest_y_pred) 

forest_precision = precision_score(y_test, forest_y_pred, pos_label='real') 

forest_recall = recall_score(y_test, forest_y_pred, pos_label='real') 

forest_f1 = f1_score(y_test, forest_y_pred, pos_label='real') 

 

print("Random Forest Accuracy:", forest_accuracy) 

print("Random Forest Precision:", forest_precision) 

print("Random Forest Recall:", forest_recall) 

print("Random Forest F1 Score:", forest_f1) 

 

# Forming the confusion matrix 

forest_cm = confusion_matrix(y_test, forest_y_pred) 

plt.figure(figsize=(6, 4)) 

sns.heatmap(forest_cm, annot=True, cmap="Blues", fmt='g', xticklabels=['fake', 'real'], yticklabels=['fake', 

'real']) 

plt.title("Random Forest Confusion Matrix") 

plt.ylabel("True label") 

plt.xlabel("Predicted label") 

plt.show() 

 

# Plotting the ROC curve 

forest_probs = forest_model.predict_proba(X_test)[:, 1] 

fpr, tpr, thresholds = roc_curve(y_test, forest_probs, pos_label='real') 
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roc_auc = auc(fpr, tpr) 

 

plt.plot(fpr, tpr, color='lightblue', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) 

plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Random Forest ROC Curve') 

plt.legend(loc="lower right") 

plt.show() 

 

B.2 SVM Model 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, 

roc_curve, auc 

import matplotlib.pyplot as plt  

import seaborn as sns 

 

# Load the data 

data_SVM = pd.read_csv("data.csv") 

 

# Separate features and labels 

X = data_SVMEntropy", "Wrapped", "Noise", "Blur", "Keypoints", "Blobs"]] 

y = data_SVM["Label"] 

 

# Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 

 



87 
 

# Standardize the features 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Initialize the SVM classifier 

svm_model = SVC(kernel='rbf', random_state=1) 

 

# Train the SVM model 

svm_model.fit(X_train, y_train) 

 

# Make predictions on the test set 

svm_y_pred = svm_model.predict(X_test) 

 

# Evaluate the performance of the model 

svm_accuracy = accuracy_score(y_test, svm_y_pred) 

svm_precision = precision_score(y_test, svm_y_pred, pos_label='real')  

svm_recall = recall_score(y_test, svm_y_pred, pos_label='real')  

svm_f1 = f1_score(y_test, svm_y_pred, pos_label='real') 

 

print("SVM Accuracy:", svm_accuracy)  

print("SVM Precision:", svm_precision)  

print("SVM Recall:", svm_recall)  

print("SVM F1 Score:", svm_f1) 

 

# Generate the confusion matrix 

svm_cm = confusion_matrix(y_test, svm_y_pred)  

plt.figure(figsize=(6, 4)) 

sns.heatmap(svm_cm, annot=True, cmap="Blues", fmt='g', xticklabels=['fake', 'real'], yticklabels=['fake', 

'real']) 

plt.title("SVM Confusion Matrix")  
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plt.ylabel("True label")  

plt.xlabel("Predicted label")  

plt.show() 

 

# Plot the ROC curve 

svm_probs = svm_model.decision_function(X_test) 

fpr, tpr, thresholds = roc_curve(y_test, svm_probs, pos_label='real')  

roc_auc = auc(fpr, tpr) 

 

plt.plot(fpr, tpr, color='lightblue', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)  

plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05])  

plt.xlabel('False Positive Rate')  

plt.ylabel('True Positive Rate')  

plt.title('SVM ROC Curve')  

plt.legend(loc="lower right")  

plt.show() 

 

 

B.3 MesoNet 
 

import pandas as pd 

import tensorflow as tf 

from tensorflow.keras.models import Model as KerasModel 

from tensorflow.keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D, BatchNormalization, 

Dropout, Reshape, Concatenate, LeakyReLU 

from tensorflow.keras.optimizers import Adam 

 

# Define constants 

IMGWIDTH = 256 
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class Classifier: 

    def __init__(self): 

        self.model = 0 

 

    def predict(self, x): 

        if x.size == 0: 

            return [] 

        return self.model.predict(x) 

 

    def fit(self, x, y): 

        return self.model.train_on_batch(x, y) 

 

    def get_accuracy(self, x, y): 

        return self.model.test_on_batch(x, y) 

 

    def load(self, path): 

        self.model.load_weights(path) 

 

class Meso4(Classifier): 

    def __init__(self, learning_rate=0.001): 

        self.model = self.init_model() 

        optimizer = Adam(learning_rate=learning_rate) 

        self.model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy']) 

 

    def init_model(self): 

        x = Input(shape=(IMGWIDTH, IMGWIDTH, 3)) 

 

        x1 = Conv2D(8, (3, 3), padding='same', activation='relu')(x) 

        x1 = BatchNormalization()(x1) 

        x1 = MaxPooling2D(pool_size=(2, 2), padding='same')(x1) 

 

        x2 = Conv2D(8, (5, 5), padding='same', activation='relu')(x1) 
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        x2 = BatchNormalization()(x2) 

        x2 = MaxPooling2D(pool_size=(2, 2), padding='same')(x2) 

 

        x3 = Conv2D(16, (5, 5), padding='same', activation='relu')(x2) 

        x3 = BatchNormalization()(x3) 

        x3 = MaxPooling2D(pool_size=(2, 2), padding='same')(x3) 

 

        x4 = Conv2D(16, (5, 5), padding='same', activation='relu')(x3) 

        x4 = BatchNormalization()(x4) 

        x4 = MaxPooling2D(pool_size=(4, 4), padding='same')(x4) 

 

        y = Flatten()(x4) 

        y = Dropout(0.5)(y) 

        y = Dense(16)(y) 

        y = LeakyReLU(alpha=0.1)(y) 

        y = Dropout(0.5)(y) 

        y = Dense(1, activation='sigmoid')(y) 

 

        return KerasModel(inputs=x, outputs=y) 

 

class MesoInception4(Classifier): 

    def __init__(self, learning_rate=0.001): 

        self.model = self.init_model() 

        optimizer = Adam(learning_rate=learning_rate) 

        self.model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy']) 

 

    def InceptionLayer(self, a, b, c, d): 

        def func(x): 

            x1 = Conv2D(a, (1, 1), padding='same', activation='relu')(x) 

 

            x2 = Conv2D(b, (1, 1), padding='same', activation='relu')(x) 

            x2 = Conv2D(b, (3, 3), padding='same', activation='relu')(x2) 
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            x3 = Conv2D(c, (1, 1), padding='same', activation='relu')(x) 

            x3 = Conv2D(c, (3, 3), dilation_rate=2, strides=1, padding='same', activation='relu')(x3) 

 

            x4 = Conv2D(d, (1, 1), padding='same', activation='relu')(x) 

            x4 = Conv2D(d, (3, 3), dilation_rate=3, strides=1, padding='same', activation='relu')(x4) 

 

            y = Concatenate 

 

(axis=-1)([x1, x2, x3, x4]) 

 

            return y 

        return func 

 

    def init_model(self): 

        x = Input(shape=(IMGWIDTH, IMGWIDTH, 3)) 

 

        x1 = self.InceptionLayer(1, 4, 4, 2)(x) 

        x1 = BatchNormalization()(x1) 

        x1 = MaxPooling2D(pool_size=(2, 2), padding='same')(x1) 

 

        x2 = self.InceptionLayer(2, 4, 4, 2)(x1) 

        x2 = BatchNormalization()(x2) 

        x2 = MaxPooling2D(pool_size=(2, 2), padding='same')(x2) 

 

        x3 = Conv2D(16, (5, 5), padding='same', activation='relu')(x2) 

        x3 = BatchNormalization()(x3) 

        x3 = MaxPooling2D(pool_size=(2, 2), padding='same')(x3) 

 

        x4 = Conv2D(16, (5, 5), padding='same', activation='relu')(x3) 

        x4 = BatchNormalization()(x4) 

        x4 = MaxPooling2D(pool_size=(4, 4), padding='same')(x4) 

 

        y = Flatten()(x4) 
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        y = Dropout(0.5)(y) 

        y = Dense(16)(y) 

        y = LeakyReLU(alpha=0.1)(y) 

        y = Dropout(0.5)(y) 

        y = Dense(1, activation='sigmoid')(y) 

 

        return KerasModel(inputs=x, outputs=y) 

``` 
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