
Audra R. Diers
Strategy Consulting, adiers@strategyconsultingco.com

Audra R. Diers

Abstract

Jessica Furgerson offered an important call to action by arguing Bloom’s Taxonomy of Educational Objectives should be applied as a way to evaluate research skill acquisition in forensics participation. I have used her analysis as a way to show that more than just understanding what we do (and should do) in forensics, we should use theory to guide team goal-setting and program evaluation. In addition, I have argued forensics program administrators should establish theory-based program evaluation using Bandura’s social cognitive theory to demonstrate the value forensics offers to the overall university education mission.

Keywords: Forensics, theory, Bloom’s Taxonomy, Social Cognitive Theory, program evaluation

Introduction

Though the digital age has largely erased the need for dragging 50 pounds of books to the all-night Kinko’s or spending hundreds of dollars in newspaper and magazine subscriptions, the centrality of research remains a core component in intercollegiate forensics competition. The irony of the scholarship linking research skill acquisition and forensics is that the community has not yet built a sufficient body of work to explain either the programmatic or the educational outcomes associated with forensics participation. In her analysis, Furgerson (2012) rightly identifies the dearth of academic work demonstrating the connection between research skill acquisition and the goals of competitive forensics on a larger scale. Furgerson’s analysis does an admirable job of demonstrating how forensics administrators can do a better job of positioning their program’s educational outcomes by applying Bloom’s Taxonomy of Educational Objectives; however, I believe we must go further to build a research agenda that more actively investigates the education-related outcomes associated with participation in forensics. It is by conducting this kind of outcomes assessment that program administrators may more effectively demonstrate that not only do they build their programs with pedagogically strong objectives but also that they can deliver positive results for these outcomes. This kind of assessment is aligned with Salmon’s (1989) argument that campaigns and programs claiming to make changes for the public good should be critically assessed to make sure they are meeting their goals. While not a common approach in evaluating forensics programs, it is a common approach in other arenas of education interventions (Bandura, 2006).
In building onto Furgerson’s (2012) argument, I will interrogate two of the core assumptions she makes in her piece: (1) research and research skill acquisition matters; and (2) Bloom’s Taxonomy of Educational Objectives is a useful conceptual end for positioning forensics as a valuable activity. In so doing, I will argue that by applying Bandura’s (2006) social cognitive theory (SCT), we can build a more effective call for program evaluation in forensics applicable to both evaluating the educational outcomes of research skill acquisition as well as other forensics-related educational outcomes.

Research Skill Acquisition Matters

Most of us who have gone through high school and/or intercollegiate forensics programs take for granted that research skills are important. We assume that because we can likely find someone supporting about any position imaginable, the most innovative literature, or link and impact scenarios connecting American environmental policy to global thermonuclear war that any of that matters in the real world. For those remaining in academia, our prior experience with research, mentoring, and high levels of research-oriented confidence probably positively influences our research skills as early career academics and is likely predictive of our long-term career prospects (Hemmings, 2012). However, for the majority of the population this assumption of positive outcomes for research and information literacy may not be so obvious. In fact, because the overwhelming majority of undergraduates admit their discomfort with library research and subsequent information illiteracy (Kunkel, Weaver, & Cook, 1996), they likely do not view research as an essential job or life skill (Murtonen, Olkinoura, Tynjala, & Lehtinen, 2008). For those of us in academia, this point is probably painfully obvious as we work with our undergraduates across the curriculum, as this is often a topic of complaint in our departments, curriculum planning, and with our administration. Yet, if we cannot demonstrate the direct and causal connections between participation in intercollegiate forensics, research skill acquisition, and the outcomes of developing research skills then it does not matter if we are speaking to an audience predisposed to value research skills qua research skills because we have not provided an enduring ‘return on the investment’ of forensics participation.

Furgerson (2012) rightly identifies the paucity of research with regard to the link between forensics and research skills. This is likely attributable to two factors: little scholarship in forensics and a dearth of research on research skills outcomes. First, in the last two decades while there has been some social science research on forensics, much of it focuses on the development of particular events and very little relates to situating intercollegiate forensics into an academic setting. In fact, in a special edition of the *National Forensics Journal* in 1990, there were many calls for scholarly research in forensics identifying the need for forensics pedagogy (Dean, 1990) and pleas for research that benefitted both the forensics and academic communities (Kay, 1990). However, there was also a cynical acknowledgement that many forensics coaches view research as a function of job security instead of a legitimate intellectual endeavor (Aden, 1990) and Porter (1990) noted, “We will continue to be overlooked … until we
recognize and begin conducting scholarly research in our discipline” (p. 95) also noting a decrease in tenure track positions in coaching and emerging campus irrelevance of the activity. In the two decades since, there has been little work to revolutionize the nature of academic research in forensics. Even when efforts to critically examine forensics emerge, they often argue for the importance of pedagogically-grounded practice (Kelly & Richardson, 2010), but often offer soft goals devoid of theoretical grounding and are not translatable outside of the forensics community. In short, while research skills are essential to the practice of forensics for competitors, the coaching and administration has failed to build an active research agenda centered on work that benefits both the forensics and academic community.

Second, there is a dearth of research on the value of research skills themselves – either inside or outside of forensics. The value of research, ranging from traditional academic research to library-based information literacy research, is often assumed but seldom investigated directly to identify viable outcomes for students. Instead, we more typically focus on course and program design linking research skills to critical thinking, students’ ability to ask important questions, reflexivity, and creativity (Walkington et al., 2011) assuming that because these elements are built into course design, we necessarily can expect to find them in our outcomes assessments. Yet, in the few studies that have emerged in recent years, research skills are strongly related to both direct research skill and life skill outcomes. For example undergraduates participating in research, as a part of their curriculum, report a more critical appreciation of research (Howitt, Wilson, Wilson, & Roberts, 2010) as well as improved scientific and quantitative reasoning (Henderson, Nunez-Rodriguez, & Casari, 2011). However, more importantly, improved research skills have also been linked to improvement in life skills including time management, academic literacy, improved sense of global citizenship, and improved communication skills (e.g., Henderson, et al., 2011; Howitt, et al., 2010). These findings, coupled with those focusing on career advancement among early career academics (Hemmings, 2012) as well as those identifying that research exposure improves student understanding of research as an essential job skill (Murtonen et al., 2008) suggest developing strong appreciation for research affords students a vital set of research and life skills.

There is clearly more work to do in understanding the antecedents and outcomes of research skills in both routine academic and forensics contexts. Kay (1990) argued forensics coaches and administrators have the opportunity to conduct research that matters to both the activity as well as the academic community and there may be no greater contribution that forensics research could make than better understanding the value of research skills acquisition on overall student development. Academic work from forensics scholars that demonstrate tangible research skills antecedents and outcomes also affords programs the real opportunity to show a return on the all-too-often hidden ‘return on investment’ that would help program administrators build a more credible case for the maintenance and growth of financial support for forensics programs. In debate, we all too often talk about ‘bodies on the flow’ as a way to denote the im-
importance of quantitatively demonstrating the impact of a plan or position on the topic; we must also do this with regard to our programs.

Building a Theoretically Grounded Research Agenda

Instead of using current practice in forensics to ground pedagogical goals, as we see with the “Pedagogical Prerogative Perspective” (e.g., Kelly & Richardson, 2010) that are not conceptually well-grounded, it is important that forensics researchers base their work in theoretically grounded pedagogical, persuasion, and/or organizational research. We must ensure that when we use concepts like efficacy and discuss learning outcomes, we invoke appropriate theoretical grounding. For this reason, I believe Furgerson’s (2012) recommendation to base intercollegiate forensics programmatic goals in Bloom’s Taxonomy is an important first step. This affords forensics programs the opportunity to build more realistic measurable objectives that translate both into competitive and annual goals; in fact, this helps forensics programs to view themselves as a campaign. A campaigns perspective is useful because they are purposive – specifying particular outcomes, have defined time limits, and can be implemented at multiple levels (e.g., individual and organizational) simultaneously (Rogers & Storey, 1987). These qualities help forensics administrators translate the work they do into the ongoing mission of their colleges and universities.

Yet, this is not the only necessary step; once the goals are established they must be measured and better understood. For example, it is important to understand not only the extent to which a program has been effective in meeting its goals but also why it has been effective so that successful elements can be replicated and the program can be improved in the future. It is for this reason that outcomes research grounded by appropriate behavioral and communication theories is needed in order for forensics program administrators to demonstrate clear outcomes for their programs.

The Case for Social Cognitive Theory in Forensics Program Evaluation

While there are many learning, behavioral change, and communication theories that could effectively apply to forensics program evaluation, the most applicable and useful may be Bandura’s (1986) social cognitive theory (SCT). Developed as a learning theory, SCT acknowledges the complex nature of behaviors and learning by identifying the reciprocal interactions between the environment, the individual, and behaviors (Bandura, 1986; Ratten & Ratten, 2007). There are four major elements of the theory applicable to forensics program evaluation. Initially, Bandura (1986) argues that much of our learning occurs through observation – specifically that we model desirable behaviors that we see. Our models can be actual people or symbolic models (e.g., a book). There are four direct ways to assess whether observational learning has taken place (Gibson, 2004). First, the learner must pay attention to important components of the behavior(s). Our attention is often influenced by our basic abilities to comprehend, past reinforcements, and desirable attributes of modeled activities or the models themselves. Second, the learner must be able to remember the modeled behavior. Third, the learner must be able to produce the desired behavior –
that is they have to be able to translate observable learning into performance. Finally, learners must be motivated to learn—people are more likely to adopt modeled behaviors if they believe they will result in positive outcomes. Observational learning has clear applicability in forensics contexts. The coaching and competition process focuses on observational learning—students modeling (hopefully) what their coaches discuss, learning about the events themselves, gaining experience at tournaments, and until they are competitive actively comparing themselves to those competitors doing well in their events. An advantage of using observational learning as a measure of a program’s success is that it is a way to concretely demonstrate skill acquisition. In the context of research skill acquisition, in particular, observational learning should be a key predictor of students’ ability to translate forensics competition into appreciation of research skills and development of relevant life skills (Henderson, et al., 2011; Howitt, 2010; Murtonen, et al., 2008). Further, coaching should also prove to be a strong predictor of the process of developing research skills as previous research found that mentoring was positively related to self-efficacy, perceptions of research aptitude, and long-term expectations of research’s applicability to career development (Little, Kearney, & Britner, 2010).

The second element of social cognitive theory applicable to forensics program evaluation is reciprocal determinism. This is the hallmark of the theory based on the aforementioned bi-directional interactions between behaviors, the environment, and personal factors (Bandura, 1986; Ratten & Ratten, 2007). Reciprocal determinism represents the argument that behavior is determined by the individual through cognitive processes and by the environment through social stimulus (Bandura, 1986). Yet, reciprocal determinism also suggests that previous behaviors also influence our social experiences and cognitive processes. Reciprocal determinism is useful in evaluating forensics programs because it begins to separate team member abilities, the team environment, as well as competitive practices. In evaluating the outcome of research skills acquisition in forensics programs, reciprocal determinism can apply Bloom’s Taxonomy, as Furgerson describes, and then identify the causal relationships between the cognitive and affective domains (as personal processes) with the behavioral domains (as behavioral processes). The advantage to using SCT is that the program evaluator can then add in environmental factors (e.g., availability of resources, coaching, tournament travel, etc.) to explain the relative level of success they have had in fostering research skills.

The third element of SCT is self-regulation behavior. Bandura (1986) argues that as a result of direct or vicarious (i.e., watching others) experience, people learn standards of high quality performance of behaviors. Those standards become the basis for self-evaluation as well as anticipated personal performance or our projections on how well we expect to perform the behavior (Bandura, 1986; Gibson, 2004; Wood & Bandura, 1989). Very simply, self-regulation is based on our ability to evaluate the relative quality of performance and compare ourselves against those benchmarks to know whether we are performing well. It also involves our ability to evaluate our relative level of task competence and success—that is our self-efficacy (Bandura, 1982, 1997).
ertainly, this is applicable to all areas of forensics competition; however, with direct consideration for research skills, these self-regulation evaluations seem to be positively affected by simple training, experience, and mentoring (Fitzpatrick & Muelemans, 2011; Little, et al., 2010).

The final element of SCT applicable to forensics program evaluation is self-efficacy. Self-efficacy is an own judgment as to how effective a person can be in a given situation – that is, an individual’s prediction as to their level of competency for a given task (Bandura, 1982, 1997; Gibson, 2004; Wood & Bandura, 1989). Unlike notions of self-esteem, self-efficacy is specific to given tasks, behaviors, or task groupings. For example, because I am confident in my ability to understand communication theory, I am not necessarily confident in my ability to understand physics because the two are not similar enough. Conceptually, self-efficacy has been tested in varied contexts ranging from health behaviors like nutrition (Boyle & LaRose, 2008) to organizational management (Wood & Bandura, 1989) to technology skills acquisition (Ratten & Ratten, 2007) and across many theories including SCT, the theory of reasoned action (Aizen, 2005), or the extended parallel process model (Witte, 1992) to name a few. Over the last few decades, researchers have found that self-efficacy is influenced by personal accomplishments and failures, observations of models performing similar tasks, verbal persuasion, and intensity of emotional reaction or arousal (Gibson, 2004). Conceptually, self-efficacy is a valuable yet understudied predictor of competitive success as higher levels of efficacy are positively related to behavioral change. As I have alluded to previously, efficacy and research skills are strongly linked with findings indicating that self-efficacy is a central factor in predicting research skill acquisition among early career academics (Hemmings, 2012), for students learning research skills (Fitzpatrick, 2011; Little, 2010); therefore, we should expect that self-efficacy would be a significant predictor of research skills in competitive forensics. Understanding how coaches and teams can create stronger levels of self-efficacy for research skills would offer a strong indicator of team success. Yet, these are the types of concepts that have not yet been studied in the context of intercollegiate speech and debate.

Getting Started

Most directors, graduate coaches, and/or administrators reading this call for research would likely say something along the lines of, “That would all be nice, but...”. There are harsh realities for program administrators in forensics – they are typically understaffed; seldom have terminal degrees; and have to be coaches, mentors, secretaries, executive assistants, financial managers, event coordinators, publicists, instructors, advisers, recruiters, and good departmental citizens. In the best circumstances, the Director of Forensics (DOF) has either an assistant coach and/or graduate students. In optimal circumstances, there is support staff (beyond the work study) for helping with paperwork and administrative duties. However, even in these circumstances realistically coaches are challenged to conduct research – even if they like research and want to conduct it. That said it is essential for program administrators to prioritize data collection
and analysis whether it is on their own or inviting interested researchers in their own departments to help them evaluate the programs.

So, where should the research process begin? It must begin with setting measurable objectives. Furgerson (2012) has offered Bloom’s Taxonomy for setting research skills acquisition objectives. Her advocacy, however, offers a model for developing educational objectives – that is, identify an existing educational, communication, or psychosocial taxonomy applicable to core skill sets in forensics and apply them to goal-setting for the team. From there, I have offered a model for how to use valid and reliable theory to evaluate program objectives by discussing the SCT. As a theory, SCT is useful because it is a learning-centered theory and well-suited to forensics team environments. This is where program administrators must plan their goals and assessment procedures before the competitive or academic years begin. These must be set a priori and cannot be done in a post hoc manner because there is no way to show positive changes. Also, notice that competitive goals (e.g., particular rankings) are not included – while those are always important team objectives, it is more important to show department and university administrators more than pretty shiny baubles because the trophies do not translate into money nor clearly into educational talking points for colleges and universities.

Next, devising the measurement is important. In many cases, I would recommend a pretest, post-test design. Now, I am not necessarily talking about high-level statistics and experimental design. I am talking about potentially simple qualitative or quantitative evaluations that can be done at the beginning of the year and then again repeated at the end of the year. For example, in the context of research skill development, a DOF could create a timed research challenge that students completed within the first couple of weeks of the year and then again at the end of the year. By critically evaluating the changes in student performance, the DOF has data to support his or her claims about team skill acquisition and set future goals. Yet, it is also important to build in ways to account for those changes – identifying the personal and team factors that accounted for the changes in skills development is critical. For example, a coach wanting to measure self-efficacy could use Bandura’s (2006) guidance for constructive self-efficacy scales to identify if students’ confidence in their ability to conduct research had changed over the course of the year. In addition, DOF’s could use observational data about the culture of research and peer pressure to interrogate the environmental influences on behaviors. Of course, the methodological complexity and ability to reliably predict the effectiveness of the program would depend on the research design; however, any theoretically driven and well-executed design is going to produce useful program evaluation information for program directors.

In the end, Furgerson (2012) offered an important starting point for reevaluating our approach to research skill acquisition and in fact, program design in forensics. In a world of scarce resources where forensics programs must show a value for the money spent, it is incumbent on program administrators to not only improve their programs but also be able to show the connection between what we all know to be the value of forensics in tangible ways. Ours are not the
first calls for more effectively integrating theory, research, and planning into forensics programs but hopefully we have demonstrated both the value-added in so doing.

References
Howitt, S., Wilson, A., Wilson, K., & Roberts, P. (2010). 'Please remember we are not all brilliant': Undergraduates' experiences of an elite, research-intensive degree at a research-intensive university. Higher Education Research & Development, 29(4), 405-420. doi: 10.1080/07294361003601883

Author’s Note:
Audra R. Diers, Ph.D., is with Strategy Consulting and may be reached at adiers@strategyconsultingco.com