Enhanced Spectral Sensing by Electromagnetic Coupling with Localized Surface Plasmons on Subwavelength Structures

Document Type


Publication Date



Existing sensor platforms have limited sensitivity, specificity, and portability. With a new algorithm for the coupled dipole approximation of Maxwell’s equations, we examine nearand far-field features of electromagnetism (EM) coupled with localized surface plasmons on subwavelength, solid-state nanoparticle (NP) structures measured using spectroscopy, microscopy, and calorimetry. Near-field extinction efficiency, blue/redshifts, and full-width at half-maximum are optimized using a new “bottom-up” NP assembly method that tunes particle size and spacing to enhance sensitivity and produce molecule-specific ≥ tenfold surface-enhanced Raman spectroscopy enhancements. Far-field plasmon–photon resonances are identified, which offer ≥10⁶-fold higher sensitivity. Solid-state NP structures increase stability, reduce power consumption, and improve response time and optothermal transduction up to tenfold for better portability and throughput relative to aggregation-prone NP suspensions. Sample rate is increased ≥ tenfold by inducing transverse hydrodynamic diffusion adjacent to sensor interfaces. These results guide development of next-generation chemical and biological sensors based on EM-coupled UV, Raman, or terahertz modes that improve sensitivity, biospecificity, stability, and portability to distinguish biological molecules and species at high throughputs.


Physics and Astronomy

Publication Title

IEEE Sensors Journal