Modeling Hot Gas Flow in the Low-Luminosity Active Galactic Nucleus of NGC3115

Roman V. Shcherbakov, University of Maryland at College Park
Ka-Wah Wong, Minnesota State University Mankato
Jimmy A. Irwin, University of Alabama - Tuscaloosa
Christopher S. Reynolds, University of Maryland at College Park


Based on the dynamical estimates of the black hole (BH) mass, NGC3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1Ms Chandra X-ray visionary project observations of the NGC3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this work we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy by the stars and supernova explosions. We incorporate electron heat conduction, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. We reach reduced \chi^2=1 fitting simulated X-ray emission to the spatially and spectrally resolved observed X-ray data. Radial modeling favors a low BH mass <1.3*10^{9}Msun. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r_ st~1arcsec, so that most of gas, including the gas at a Bondi radius r_B=2-4arcsec, outflows from the region. We put an upper limit on the accretion rate at 2*10^{-3}Msun/yr. We find a shallow density profile n~r^{-\beta} with \beta~1 over a large dynamic range. This density profile is determined in the feeding region 0.5-10arcsec as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r<1arcsec, and (4) the outflow at r>1arcsec. Conduction makes the density profile shallow only very close to the BH at r<0.1arcsec. The gas temperature is close to the virial temperature T_v at any radius. The temperature profile is shallow outside of the Bondi radius because the enclosed stellar mass is proportional to radius M_enc~r, which leads to flat virial temperature profile.