Document Type
Article
Publication Date
10-7-2021
Abstract
Vertical flight performance of Lighter-than-Air free hot-air balloons is derived and discussed. Novel mathematical model using lumped-parameters has been used to model balloon flight dynamics and steady-state performance in particular. Thermal model was not treated as the super-heat is under the control of aeronauts/pilots. Buoyancy or gross lift, net or effective lift, specific lift, and excess specific lift were derived for a general single envelope balloon and can be applied to hot-air, gas and hybrid balloons. Rate-of-climb, absolute ceiling, rate-of-descent, and the maximum rate-of-descent or the uncontrolled terminal descent have all been modeled and sample computations performed for AX8 or AX9 FAI-class hot-air balloons. Lifting index or the specific net/effective lift have been computed treating ambient and hot air as ideal gases at various pressure altitudes and representative envelope temperatures. Drag coefficient in upward and downward vertical flights have been chosen based on best available data. Experimental scale and full-scale flight tests are suggested for more accurate estimates of external aerodynamics in vertical balloon flights. CFD computations of coupled inner- and external-flows are also recommended in future efforts. Knowledge of free balloon’s vertical performance is essential in flight planning and operational safety of flight.
Department
Aviation
Print ISSN
1648-7788
Online ISSN
1822-4180
Publication Title
Aviation
Recommended Citation
Daidzic, N. E. (2021). Mathematical model of hot-air balloon steady-state vertical flight performance. Aviation, 25(3), 149-158. https://doi.org/10.3846/aviation.2021.15330
DOI
10.3846/aviation.2021.15330
Link to Publisher Version (DOI)
Publisher's Copyright and Source
Copyright © 2021 The Author(s). Published by Vilnius Gediminas Technical University.
First published by Vilnius Gediminas Technical University at https://doi.org/10.3846/aviation.2021.15330
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.