Abstract
Upon the eventual return of humans to the lunar surface, leveraging local resources to construct landing pads and other infrastructure is an essential component to minimize cost and risk. The inability to accurately model landing and launch scenarios to predict damage to lunar structures poses risks to astronaut and equipment safety. The following experiment is an investigation of using simulation software and temperature sensors to model lunar and Martian regolith simulant-based concrete exposed to thermal loads. The basis of this experiment is built upon standards defined by the American Society for Testing and Materials, the fundamental axioms of structural health monitoring, simulation software capabilities and limitations, and the properties of likely candidates for materials used for lunar and Martian in-situ construction. Parallel testing was with simulation software, and physical equipment with material cube samples. The goal of this testing is to collect comparable temperature data to determine the accuracy of the simulation and determine the resulting temperature and strain response within the material. This thesis seeks to address the lack of characterization of lunar and Martian regolith simulant-based concrete in their expected use conditions. The outcomes of this experiment serve as a preliminary basis for future testing and characterization of in-situ based materials to be used to create critical infrastructure to support a sustained human presence on the moon and Mars.
Advisor
Jacob Swanson
Committee Member
Rebecca Bates
Committee Member
Michael Fiske
Committee Member
Robert Sleezer
Date of Degree
2022
Language
english
Document Type
Thesis
Program
Integrated Engineering
Degree Program/Certificate
Engineering with an Aerospace Focus
Degree
Bachelor of Science in Engineering (BSE)
Department
Integrated Engineering
College
Science, Engineering and Technology
Recommended Citation
Campbell, A. (2022). Thermal testing and simulation of Lunar and Martian ISRU-based materials [Bachelor of Science thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all/4/
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.