Abstract
Rain water penetration testing on power generator units requires a number of complicated procedures, requiring many resources. As such, a Computational Fluid Dynamics (CFD) tool, "FloEFD for Creo" is used to study the water penetration behavior on a OM924 diesel power generator enclosure in a computational environment. First, the three governing equations in fluid dynamics are derived and explained using simple methods. Next, behavior of rain water droplets upon impact is briefly discussed. Air velocity, volumetric flow rate and static pressure drop were measured physically in the OM924 generator enclosure. Then, a CFD model for the OM924 enclosure was developed and validated using the measured data. Using the particle studies option in FloEFD, rain water penetration studies were conducted on the CFD model. The terminal velocity of the droplets was assumed as a function of droplet diameter and the co-efficient of restitution was measured using basic observational methods. In an enclosure, the water penetration can be explained using three methods; free flowing, dripping and splashing. Each of the methods was tested using water droplet diameters that ranged from 0.1 to 2.5 mm. Results verified that the current baffle plate design was capable of preventing water penetration with the exception of those droplets with the smallest diameters.
Advisor
Bruce Jones
Committee Member
Gary Mead
Committee Member
Kuldeep Agarwal
Date of Degree
2015
Language
english
Document Type
Thesis
Degree
Master of Science (MS)
Department
Automotive and Manufacturing Engineering Technology
College
Science, Engineering and Technology
Recommended Citation
Andawatta Kankanamge, S. (2015). Air Flow and Rain Water Penetration Analysis on Generator Enclosures Using CFD Simulations [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/434/
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License