Abstract
Microgrid monitoring focusing on power data, such as voltage and current, has become more significant in the development of decentralized power supply system. The power data transmission delay between distributed generator is vital for evaluating the stability and financial outcome of overall grid performance. In this thesis, both hardware and simulation has been discussed for optimizing the data packets transmission delay, energy consumption, and collision rate. To minimize the transmission delay and collision rate, state-action-reward-state-action (SARSA) and Q-learning method based on Markov decision process (MDP) model is used to search the most efficient data transmission scheme for each agent device. A training process comparison between SARSA and Q-learning is given out for representing the training speed of these two methodologies in the scenario of source-relaying-destination model. To balance the exploration and exploitation process involved in these two methods, a parameter is introduced to optimize the cost time of training process. Finally, the simulation result of average throughput and data packets collision rate in the network with 20 agent nodes is presented to indicate the application feasibility of reinforcement learning algorithm in the development of scalable network. The results show that, the average throughput and collision rate stay on the expected ideal performance level for the overall network when the number of nodes is not too large. Also, the hardware development based on Bluetooth Low Energy (BLE) is used to reveal the process of data packets transmission.
Advisor
Vincent J. Winstead
Committee Member
Xuanhui Wu
Committee Member
Jianwu Zeng
Date of Degree
2019
Language
english
Document Type
Thesis
Degree
Master of Science (MS)
Department
Electrical and Computer Engineering and Technology
College
Science, Engineering and Technology
Recommended Citation
Xu, C. (2019). Optimization of energy harvesting mobile nodes within scalable converter system based on reinforcement learning [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/938/
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.